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CHAPTER I 

INTRODUCTION 

T'he research described in this thesis is part of a continuing effort, at the Stanford 
Hand-eye p.oject, to develop the capabilities for a machine to analyze scenes of complex objects 
and manipulate these objects for tasks such as part assembly. Much of the past work in three- 
dimensional scene analysis has concentrated on scenes containing polyhedral objects only. This 
thesis is concerned with machine generation of symbolic descriptions for three-dimensional 
complex, curved objects and their recognition based on these descriptions. The complexity of the 
objects viewed is typified by toy animals such as a horse and a doll, and by hand tools such as a 
hammer. (The reader may wish to glance through the figures m chapter 7 for a sampling of the 
scenes these programs work with.) Our concern here will be with the shape properties of an object 
only.  Other cues such as color and surface texture have not been used. 

Previous Work; 

The problem of object recognition has received extensive attention in the literature on 
Pattern Recognition ([Duda]), though the emphasis has been on the recognition of two- 
dimensional patterns. Analysis of three-dimensio,-.»! scenes from their two-dimensional camera 
images presents the following difficulties: the two-dimensional Image of the object changes with 
the viewing angle; when multiple objects in a scene occlude each other, only parts of some objects 
will be seen in the camera image, and also the occluding objects need to be separated from each 
other. A non-convex object can partially occlude itself. Addiiionally, in our system we have 
allowed parts of an object to be articulated {i.e. move with respect to the other parts). The 
classical pattern recognition methods have not been concerned with such variations and have only 
considered statistical variations of a fixed pattern. 

A popular paradigm In pattern recognition has been that of Template Matching. 
Template matching consists of matching an input pattern with a model pattern, known as a 
template, on a point to point basis. The matching is usually performed at the level of input 
measurements, e.g. the Intensity levels in the image or the values In a range matrix. A simple 
metric, such as the root mean square of the differences, or the correlation of the image and the 
template establishes the quality of the match. Such template matching Is directly applicable only if 
the image of the entire scene is Invariant, eg for two-dimensional patterns. Some flexible template 
matching schemes have been suggested ([Widrow],[Fischler]). Parts of such a template are 
allowed tc be moved with respect to the others. Comparison of the observed scene with such a 
template finds the best "distortion" of the template required to match with the scene. These 
techniques, utilizing point to point matching of the model pattern and the scene are difficult to 
eAtend for the expected variations of three-dimensional scenes. Further, template matching does 
not provide use'ul similarity and difference descriptions, such as two objects are similar but for a 
missing limb in one. 

The early work on three-dimensional scene analysis simplified the problem by restricting 
to homogeneous polyhedral objects. In a now classical work, Roberts ([Roberts 63]) extracted edge 
information from simple polyhedral scenes and compared the resulting descriptions with possible 
projections of stored models for object recognition. With multiple objects in the scene, many 
combinations of known models were tried, It is clear that fjr an increasing number of models, 
ihese techniques soon become romputationally infeasible. 

              _^»_ 
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1.0 INTRODUCTION 

The attention then turned to the problem of "Body separation", i.e separation of 
occluding bodies in a scene (See [Guzman], [Falk], and [Waltz]). Crape ([Crape]) combined the 
separation of bodies with recognition, by removing parts of the scene recognized ai oclongmg to a 
known body. All of these techniques were designed to work with polyhedral objecs only, and 
extensively use the properties of edges and vertics. Though some impressive results have been 
reported ([Waltz], [Crape]), and perhaps some useful abstractions can be made the specific 
techniques used fail to generalize to a wider class of objects. 

Among previous work on curved objects, B K.P. Horn ([Horn]) presented techniques for 
extracting three dimensional depth data from a TV image, using reflection characteristics of the 
surface. Krakauer ([Krakauer]) represented objects by connections of brightness contours. Ambler 
et al ([Ambler]) describe experiments with simple shapes, including curved objects, using relations 
within a two-dimensional image. However, none of these efforts really addresses the problem of 
"shape" representation and description. Work on outdoor scene analysis is also concerned with 
non-polyhedral objects ([Bajcsy], [Yakimovsky]), but again no attention has been paid to shape 
analysis. 

Our work Is based on initial work of C.J. Agin and T.O. Binford ([Agin 72, 73], 
[Bmford]) Binford proposed a new representation for complex objects by segmentation into 
primitive parts described as Ceneralized Cylinders (and cones), which are defined by a space 
curve, known as the axis, and a set of cross-sections along this curve. The shape and the size of 
the cross-sections may change continuosly along the axis. Agin built a laser ranging system to 
measure the three-dimensional positions of the points on an object surface. The ;(-d position 
information helps resolve ambiguities caused by occlusion. (This system only measures the 3-d 
positions of points on the surface visible to 'he camera.) 

Agin described preliminary efforts at generating descriptions from the three-dimensional 
range data. However, these description techniques were unstructured; only isolated part 
descriptions were generated and not related to each other to make up a complete body. Further, 
the description of individual parts had some major deficiencies. In particular, some descriptions 
merged nearby but distinct parts. In this thesis, we present new description techniques that are 
different conceptually and in implementation. They generate adequate segmentation and part 
descriptions for an object and are a m2jor advance over the previous work. The segmentation 
techniques arc general and work without a priori knowledge of the the object being viewed. 
Structured, symbolic descriptions are generated based on these segmentations. 

Approach: 

The techniques descnoed here use the same representation and laser ranging system. 
These are briefly described In chapter 2 and section 3.1, to allow an independent reading of this 
thesis. Th- remainder of this thesis represents the author's own contributions. (Note that this 
thesis consistently uses the first person plural.) 

The chosen representation is designed to cope with the problems of 3-d scene analysis 
mentioned earlier. The major component of the chosen representation is the Structure of the 
object, defined by the connectivity pattern of ill sub-parts. This structure is invariant with the 
viewing angles, except for the absence of 13ITV parts in a particular view due to occlusion 
(computation of this structure from certain view ng angles may be difficult). However, some 
objects are reasonably described as having alternate structures (details in chapter 6). In such cases. 
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1.0 INTRODUCTION 

we just store the alternative descriptions of the same model; each description Is examined 
independently for recognition. The exaected number of such alternates is small. Articulation of a 
limb is easily described by its relation o other limbs. Our recognition procedures use descriptions 
generated from the observed data in terms of this representation. 

Two descriptions are matched in their structure as well as the details of the sub-parts. 
Note that since we have segmei.ted descriptions of the scene, the matching proceeds directly and 
does not have to try various "distortions" of the model description. Recognition is by picking the 
model which matches best with the observed description. Our system has a limited amount of 
indexing capability, i.e. a list of similar objects can be retrieved from the memory using the 
descriptions of the current objects, and comparison with each known model is not necessary 
Models for recognition are obtained by storing machine generated descriptions of the objects. 
Such a structure of visual models is known as a Visual Memory. 

Among the contributions of this thesis are; the techniques for segmenting the object into 
sub-parts from the observed data; the structure of the symbolic descriptions and techniques for 
generuting such descriptions; and methods for efficient recognition from these descriptions 
including indexing. Wo.kmg programs for the presented techniques have been written. (All of 
the described programs run without human intervention.) 

In the next section, we present an overview of our methods and discuss the adequacy of 

our techniques. 

I.I AN OVERVIEW 

The conventional input for computer vision programs has been the output of a TV 
camera or a digitized photograph. A camera image is two dimensional, whereas the spaca viewed 
is three-dimensional. The picture information is incomplete in the sense that the depth of the 
points in the image cannot be directly inferred. We use a laser tnangulation ranging method that 
gives us direct three-dimensional information about the points in the image; this method is bnetly 

described in chapter 3. 

Representation of an object by segmenting it into simpler sub-parts represented as 
generalized cones is discussed in chapter 2. Primitives other than generalized cones are also 
suggested but have not been used in our system. Each sub-part will also b: referred to as a Piece, 
various pieces connect at a joiru. The connectivity of the sub-parts of an object defines the 
structure of the object. 

Techniques; 

The block diagram of Fig. 1.1, describes schematically the processing of the range data. 
Following is an overview of these processes. 

Construction of the boundaries of the objects in the scene has been found to be useful 
in structuring the processing of the surface range data in our system. Depth discontinuities are 
used to determine object boundaries, and correspond to the normal notion of object boundaries. 
The ranging method provides us with an outer boundary that is not sensitive to gray level 
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11 OVERVIEW 

variations on the surface of the body. Boundary detection in TV images has proved to be a 
difficult problem, even with a restriction to polyhedral objects only. The boundaries separate 
different bodies m the scene; however, touching objects are not necessarily separated. This 
important case has been ignored. In occluded (including seif-ocduded) scenes, some connected 
part- of an object may not appear connected   (Boundary organization is discussed in chapter 3.) 

Techniques for segmenting an object into sub-parts and generating the descriptions for 
a part as generalized cones by specifying an axis and cross-sections are not immediate from the 
chosen representation itself. Development of these techniques has been an important part of this 
work Use of object boundaries has been important in these techniques. Our segmentation 
procedure starts by finding local cones, and then extends these local cones over larger areas of the 
object continuously, allowing the axis direction and the cross-sections to change smoothly. The 
extension terminates at discontinuities. Each extended cone offers the choice of a segmented sub- 
part of the object This segmentation procedure often generates multiple cone descriptions for 
some areas of the body Based on chosen simplicity criteria, preferred descriptions are ielected 
from the many alternatives The result is not necessarily a unique description. Multiple 
description hypothesis are generated and examined by the recognition procedures. (Details are in 
chapter 4.) 

Symbolic descriptions of an object are generated, aiming to capture its important shape 
properties They consist of the connectivity relations of the sub-parts, and summary descriptions of 
the sub-parts and their joints Global descriptions depend on the relations of many sub-parts and 
joints, eg bilateral symmetry (See chapter 5 for details) 

Matching routines compare two descriptions to determine their differences. Recognition 
consists of choosing a previously stored description that matches best with the current description. 
The matching relies heavily on the structure of the object but also uses the metric properties of 
the sub-parts. Partial matches are necessary to recognize objects with occluded parts. 
Articulations of limbs are ignored, objects with different limb articulations are recognized to be 
the same. Efficient matching between two description structures results by the use of semantic 
knowledge about the descriptions, r.g. the use of distinguished pieces (defined in chapter 5) and 
th! preservation of the order of the pieces at a joint (section 5.2). 

The models used for recognition are not ideal models, we save a machine generated 
description of the object (any major errors are removed interactively). "Learning" techniques to 
generate more complete models are suggested but have not been Investigated in detail. 

A small number of important "features" of the symbolic descriptions are used to Index 
into visual memory to retrieve models with similar descriptions. Indexing is necessary if the world 
of objects to be encountered is large in number In that case, we cannot afford to compare the 
observed description with every other known description. Details of indexing, model acquisition 
and matching are covered in chapter 6. 

(NOTE: The description and recognition chapters contain some techniques that have 
not been implemented in programs These are included to provide ideas for further extensions of 
this work, and to indicate the possibilities of improved performance. The techniques not 
implemented are clearly delineated The follr»"ing chapters of this thesis are organized so that an 
introductory section contains the important -oicep.i of the chapter and the details are provided in 
subsequent sub-sections Appendix 2. contain» ; concise summary of the techniques used and has 
the significant program details) 
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Performance: 

OVERVIEU 

The results of our implementation efforts have been encouraging, We are able to 
generate "clean" symbolic ciescnptions The recognition programs can recognize objects with limbs 
articulated to various positions (and various viewing angles). Useful descriptions result for scenes 
containing multiple objects with a moderate amount of occlusion and the partially occluded 
objects are recognized by their partial descriptions. The methods described here are applicable to 
TV Image processing, if suitable boundaries can be obtained. 

It is our view that the impoitant elements in judging the performance of recognition 
programs for the types of scenes considered here are the classes of scenes for which the programs 
work successfully We do not have enough data for meaningful statistical results, but instead 
present the results of our programs on several different scenes (in chapter 7). We have used six 
objects for our experiments and present results on 16 different views (3 of them containing two 
objects). An analysis of the performance as related to the various scene characteristics is 
presented We believe that these results represent a significant break from the world of 
polyhedral objects of the past. Section 72 discusses the speed and memory requirements of our 
programs. 

More work is needed on incorporating primitives othci than generalized cones in our 
programs for adequately describing many complex übjocts. We think that with the suggested 
additions, the programs offer potential of being usefu in "real" applications to tasks such as 
industrial automation (particularly for "visual feedback";. 

Other Paradigms: 

The flow of our processing of the scene proceeds in a fairly "bottom up" or hierarchical 
fashion The necessity of a hetcrarchical control, with much interaction between different levels is 
widely believed to be necessaiy for complex visual tasks '[Winston 71]), in agreement with current 
psychological theories about human visual perception ([Gregory]). In the chapters on description 
and recognition, we indicate how such heterarchical control might be added to our programs, 
particular examples are those of redescnption and verification. The lack of such heterarchical 
control in the current programs is attributed to the large effort that had to be spent in the 
construction of the current description and matching routines. The performance of the current 
programs is just adequate to distinguish between a doll and a toy horse. We believe, thai addition 
of verification and goal-directed low level description of such features as termination of parts will 
greatly add to the power of the system. 

More recently, Freuder ([Freuder 73a,7?b]) has argued for the necessity of the intimate 
use of goal directed knowledge at all levels of description, in contrast to the paradigm of 
generating descriptions and matching them to models The author feels that this is desirable, 
however, a iirifKipil problem to be oveicome is the selection of tne model to guide the 
descriptions. In special rrstricted applications, such as looking for a specific object, this knowledge 
may be easily available. In - more general situation, however, we believe that descriptions of the 
complexity described here need to be generated before a likely model can be retrieved from the 
memory. Local descriptions can potentially match a very large number of objects and are unlikely 
to be useful in guiding further desuiptions. 

The techniques presented here may be considered as modules that would   »  useful for 

__ 
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addition of othei pumitives or be adapted for specific applications using a different control 
structure These rnodulei should also be of direct use for extension to more complex scenes, such 
as heavily occluded scenes. 
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CHAPTER 2 

REPRESENTATION 

We arc interested in the description of the "shape" of an object, and in the recognition 
of an object based on its shape description. The term "Shape" has intuitive meaning for us, but it 
defies a precise definition The dictionary equivalents of form or extent sre equally imprecise V.'e 
are then interested in descriptions that capture our intu-tive notions of what shape descriptions 
should be like. An array of positions of points on the surface is a complete description of the 
object and useful for some purposes, but it hardly describes what one generally thinks of as shape. 

Among the desirable attributes for a shape representation are: the representation should 
describe a «« of shapes compactly anH simply, and should allow for determination of similarities 
as well as ditk ences between two shapes. Incremental changes in an object should reflect as 
incremental char l »s in the description. Many "universal" representations have been proposed, e.g. 
expansions in arl ^onal series such as moments or Fourier series, or descriptions of surfaces by 
two-dimensionr/i «pii( ?$. These repreientations contain no sense of segmentation into parts Local, 
increment?.', (.nangv of shape does not result in a local or incremental change In its expansion in 
an orthogonal serie.v It is unlikely that a single representation will be suitable for describing all 
shapes; we present a representation that describes a certain, hopefully wide and useful, class of 

shapes simply tcA compactly. 

It seems to us, that any intuitively appciling shape description must represent complex 
objects by segmentation into simpler sub-parts. The segmentation criteria could be simplicity of 
sub-parts (is a function of what a simole primitive is), articulation characteristics (each moving 
volume is a separate part) or be based on our knowledge of the construction of the ob ject (such as 
knowledge about certain parts having been attached to others). This segmentation and the 
connectivity relations of the sub-parts comprise the "Structure" of the object, hence our use of the 
term "Structured Descriptions". Segmentation allows for Inc*mei»rt1 changes of object to be 
described incrementally. 

Primitives may be surface descriptions or volume descriptions (for the simpler case of 
polyhedral objects, edge descriptions suffice). For three-dimensional objects. fhe volume 
primitives provide more intuitive segmentations. Surface discontinuities are usually not a good 
basis for segmentation. For some objects a particular surface is of special importance, e.g. many 
parts might attach along a flat surface. In such cases the representation should use a combination 
of surface and volume descriptions 

We use Generalized Cones as mam primitives, other primitives are allowed. The 
representation chosen has been previously described In [Binford] and [Agin 721 Here, in sec. 2 I, 
we present only a brief summary, reflecting our interpretation of it, and to allow an independent 
reading of this thesis. Symbolic descriptions of these parts, their joints and the complete object are 

discussed in chapter 5. 

2.1 GENERALIZED CONE PRIMITIVES 

An object is represented by segmenting it into sub-parts.   Different parts attach at a 
joint.    A  sub-part may have its own sab-parts, depending on the amount of detail  to be 

. . Mir ■ Ml 
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represented This provides a hierarchical representation allowing for varying amount of detail to 
be stored A decomposition of a human shape is as shown in Fig. 21. The human shape is 
represented as being composed of two legs attached to one end of the body =md the two arms and 
the head attached to the other end of the body.  Arms can be further represented as consisting of the head attached 
upperarm. forearm, and the fingers of the hand 

HEAD 

Fig   2.1   Segmentation of a Human Form into Sub-parts 

The principal representation for the primitive parts in our system is by generalized 
cones ether primitives are allowed. A generalized cone is defined by a space curve, called the axis, 
and normal cross-sections along this axis. The cross-sections may be any planar area, and the 
cross-section shape may change along the axis; the function describing these cross-sections is called 
the cross-section function. If the cross-sections do not change along the axis then the generated 
volume is a generalized cylinder. Formally, the volume described by sweeping of the cross-section 
along the axis has been formulated as Gtneralued Translational Invariance by Binford 
([Binford]).   We impose the following constraints on the axis and the cross-sections: 

1) The cross-sections must be normal to the local axis 

2) The axis must pass through "corresponding" points of the cross-sections. 

The points of the cross-sections to be used as corresponding points need to be chosen. 
Intuitively we want these points to be the "centers" of the cross-sections. The centers of gravity 
seem to be appropriate and are taken to be the ideal choice for the corresponding points (note this 
choice u being made as a matter of definition) The choice of corresponding points may follow 
from additional constraints on the generalized translational invariance. The centers of gravity 
require the knowledge of complete cross-actions for their computation. In section 4.1 we present 
another choice of corresponding points that are more directly computed and approximate the 

centers of gravity. 
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GENERALIZED CONES in o 

n The constramts stated above do not necessarily determme a unique ixb, cross-sect.on 
11 descnptmn for a g.ven volume.  E.g. a rectangular sol.d could be descnbed by axes P^^tO «T 

of ts three s.des However, for an untermmat.d stra.ght. c.rcular cyl.nder these cond.t.ons do 
determine a un.que descr.pt.on. corresnond.ng to the usual cho.ce of ax.s Some ax.s cross-sect.on 
descrmt^ iTpwfinStC others, as d.scussed further m sec 4* The problem of locat.ng ax.s 
without access to the complete cross-sections w.ll be discussed in sec. 4 1 

Note that th.s representat.on has not spec.f.ed an algor.thm for segmentation of an 
object .nto sub-parts. Each segmented pnmit.ve il to bl a simple >nd cont.nuous generahred cone 
the ond.t.ons for determ.n.ng s.mpiic.ty and continuity w.ll be fu.ther established in sec 4 3. 
Even with specified continuity conditions, segmentation of an object is not straight forward and 

our technique is described in chapter 4 

The choice of generaliied cones as primitives is attractive for describing shapes with an 
axis along which the cross-section vanes smoothly. This is often true of elongated shapes (but not 
resmctcd to them) Elongated shapes are commonly found in both man-made .nd natural objects 
rimbs of ammals, machme shafts, legs of a table, handle of a hammer etc . and a large class of 

ob lects can be :onveniently descnbed as being bu.lt of generalized cone parts A program dealing 
w,th a wider class of ol.jects will also need additional primitiv«, such as planes, spheres, and 

surfaces 

The shape of a pr.m.t.ve eontittl of the shapes of .ts ax.s, the shapes of the cross- 
sections along this axis. A cross-section can be descnbed by terhn.ques of segmentat.on mto 
pr.m.t.ve two dimensional "cones", re. the same representation methods can be scaled down from 
fhW dimensions to two dimensions. The shape descnpt.ons of the axis and the cross-section 
function are problems of descr.pt.on in one dimens.on Aga.n, segmentat.cn mto pr.m.t.ves, 
perhaps l.nea? or "contmuous" segments, suggests itself. The detail of these shapes in the 
^presentation can vary with the use that they are put to; we have not concentrated on these 
deu"s here We have mainly been interested in the structure of an object and use only crude 
descriptors to reprev-nt the shape of the indmdua' primitives   These descriptors are discussed in 

Sec. 6.1. 

Obiects with holes can be described in terms of the solid matter that they are made of, 
but descriptions m terms of holes are simpler and carry more semantic information The holes are 
viewed as negative volumes, and can be described as negative generalized cones (or as one of the 

other primitives listed in sec. 2.2). 

The chosen axis cross-section representation has similarities with the Blum medial axis 
transform ([Blum]). The mam differences are as follows The Blum transform Is sensitive to small 
changes in the boundary or the surface (a inuli disturbance causes major excursions of the axil) 
whereas for the gener.l.mi con» a «...Il disturbance merely perturbs the local cross-sect.ons 
Computation of the Blum transform requ.res knowledge of complete surface, our method is 
content to compute the partial cross-sections The Blum transform li a transform , i e. it y.e ds a 
un.que represintat.on for g.ven data, whereas mult.ple cones can describe the same volume 
effect.velv (eg a rectangular sol.d may be represented by axes in any of the three orthogonal edge 
directions) Non-uniqueness of the epresentaticn is not v.eweH as a disadvantage, but rather an 
important advantage allowing for alternative descriptions The Blum transform is well defined. 
however, while the description mechanisms descnbed here are sull evolving A more detailed 

comparison may be found in [Agin 72]. 
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2.2 OTHER PRIMITIVES II 

2.2 OTHER PRIMITIVES 

Some shapes need a complex cross-section function when d'j.nbed as generaliied cones. 
Description in terms of other primitives may be simpler. In the foiiowing we suggest additional 
primitives. This list is only meant to uiden the class of shapes that can be well described. 

Spheres: Though spheres can be represented by an axis, cross-section representation, 
they do not have a preferred direction of elongation, and description as a sphere is simpler. Parts 
of spheres can be described as terminal .d spheres. 

Surfaces: We have argued for the desirability of volume representations. However, for 
some objects a particular surface has special meaning and description in terms of this surface is 
preferred Eg the top of a table may be described as a thin cylinder or as a flat surface. Surface 
descriptions are likely to be useful for objects made of thm material, such as folded sheet metal. 
Surfaces are also useful in describing terminations of cones. 

Terminations: A cylinder (cone) terminated by a surface not normal to its axis can be 
descibed as a cone with a tapering cross-section function near the termination. However, a much 
simpler description is as a cylinder (cone) and"a terminating surface. 

The programs we present use generalized cone primitives exclusively. Future 
incorporation of other primitives is compatible with the methods used. These primitives suffice 
for many shapes eg. ioy animals, hand tools, and some machine parts (shafts). A major clajs of 
obiects tha' is hard to describe by primitives discussed here is that of complicated castngs; 
perhaps there are no simple representations for such shapes. V.e have not implemented 
important surface descriptions, but think that with the addition of such a primitive, useful 
descriptions can be generated for a large number of objects encountered in applications such as 

industrial automation. 
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CHAPTER b 

DATA ACQUISITION AND BOUNDARY ORGANIZATION 

In this chapter w» describe the technique used 10 directly measure three dimensional 
positions of points on the surface of an object and inference of object boundaries frcm this data 
Also discussed is the separation of a scene into different bodies, using the derived boundaries 

Humans are able to view photographs easily and infer depth information from a single 
picture using many cues, such as texture gradients, shadows, highlights etc However, machine 
implementations of these depth inference techniques constitute significant research problems by 
themselves. Our decision to use direct depth ranging was as an expedient, so that we could 
investigate the problems of shape descriptions Note, that we do not have "complete" information 
about an object, only the positions of points on the visible surface. Most of the "perception" 
problems thus remain It has turned out that many of the techniques developed can be applied to 
TV image data, and even provide clues for attacking this problem. 

In sec. 3.1, we briefly describe a laser tnangulation ranging method, ong nally developed 
by C.J. Agm and TO Binford. The geometry of the current setup is diffetrn. from that 
described in [Agm 72], however the description of details is still applicable A reader familiar 
with Agm's ranging method may skip sec 3 1. A similar ranging method has also been described 
in [Shirai].  Some other methods of depth ranging are discussed in [Earnest]. 

3.1 LASER TRIANGULATION RANGING 

Ranging by laser tnangulation is similar, in principle, to ranging using a stereo pair of 
pictures, with one camera replaced by a known source of light. Consider an object illuminated by 
a single light beam of known position and orientation (Fig ?.l) The camera image consists of 
just the one illuminated point. If the camera is calibrated ([Sobel]), the ray from the image to the 
object point is known. Since the illuminating beam is also known, the position of the object point 
can be directly determined by tnangulation Position information for the whole object can be 
obtained by scanning the object by a number of known rays However such a scan requires a 
large number of beam positions and would be slow 

Consider the illuminating light beam to be leplaced with a plane of light, of known 
position and orientation The plane intersects the object along a planar curve, and this curve 
forms an image on the camera screen. With each point on this image, we can associate a ray to the 
object, as before. Now, the intersection of this ray with the light plane uniquely determines the 
position of the object point Thus we can determine the 3-d position of each point in the image of 
the illuminated part of the object. The scanning of the complete object now involves sweeping- 
known planes across it, which is significantly faster than scanning with a point beam. 

The apparatus used for generating scanning light planes is shown schematically in Fig 
3.2. Light from a laser is diverged to a plane beam by a tylindncal lens The diverged beam is 
reflected by a mirror which can be rotated about an axis, to generate different output planes 
These planes all pass through a common line, but near the object they may be considered nearly 
parallel, but displaced in position The camera looking at the object sees only th» laser light, either 
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OBJECT 

LIGHT 
SOURCE LENS 

CENTRE 

Fig.  3.1   Schematic View of Triangulation Ranging 

by proper contrast adjustment or by placing an interference filter in front of the lens The light 
plane is scanned across the object and the corresponding images on the camera screen are 
recorded. The plane positions are known by a calibration procedure and three-dimensional 
positions of the points on the image can be computed 

Surfaces that are parallel to the !• ht plane, are measured with poor accuracy To 
counter this, we choose another orientation of u.e light plane, obtained by rotating the cylindrical 
lens in the path of the laser beam, and sweep the object with planes of this new orientation (by 
rotating the mirror). The optimum angle between the two orientations is 90 degrees, however 
hardware limitations of our apparatus frequently limit the allowed angle to «bout 45-60 degrees 

Our data input thu. consists of two series of scans, each series o scans consists of nearly 
parallel but displaced light planes, and the two orientations are at an angle of between 45 00 
degrees. Figs. 3.3 shows the two series of scans for a doü. Each frame of a scan consists of the set 
of points in the camera image that have non-zero brightness. With each frame is associated a 
transform matrix. Given an image point in the frame, this matrix can be used to generate the 
three dimensional position of the corresponding object point (use of homogeneous coordinates 
([Roberts 651) allows the transformation to be a simple matrix multiplication operation, see [Agin 
72] for details). 
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Fig   3.3   Laser Scans for a Doll 
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The tnangulation angle, le 'he angle between the light source and the camera at the 
object is typically about 45 degrees. For such setup, the resolution of the ranging systpm (relative 
error) is about 1 mm at a distance of I meter This system is subject to occlusion from two angles; 
the observed surface of the object must be visible from the camera viewpoint, and also not be In 
a shadow from the laser point of view Thus for a circular cross-section, we are able to see only 
about 120 degrees of the cross-section We have a trade-off of shadows for accuracy in deciding 
on a tnangulation angle 

The speed of the data acquisition is intrinsically limited by the time required to read 
the TV camera for each plane position We have not attempted to minimize the data acquisition 
time and the scanning of an object typically takes a few minutes. Applicability of "grid coding" 
schemes to speed up the ranging process is discussed later, in sec 7.2. 

This methor1 of depth ranging is attractive because of the direct measurement of range. 
The author was experimenting with stereo measurement of depth at the beginning of this 
research ([Nevatia]) The problem of finding corresponding regions in two scenes is a time 
consuming and error-prone operation there, and the author wis easily converted to using this 
ranging method so that wo'k could concentrate on the problems of shape description. (The 
description techniques to be described are equally applicable to range data obtained by other 
means) Baumgart ([Baumgart]) describes some techniques for data acquisition using multiple TV 
images. Other relevant work on stereo depth measurement may be found in LHannah] and 
[Levine] 

The present implementation with a He-Ne laser, limits the hue of the objects whose 
range can be measured Use of a bright white light source or a multi-colored laser source would 
alleviate this problem The main disadvantage of the method is in the shadows caused bv wide 
angle tnangulation (a much smaller tnangulation angle would still be usrful). Range of the 
apparatus is limited by the power required to project a plane, even with relatively efficient 
imaging devices, such as silicon target multiplying tubes. 

D 

32 BOUNDARY ORGANIZATION 

The data from the laser scans of the scene consist of two series of scans. Each 'can 
consists of several frames Each frame is composed of the points of non-zero brightness in a single 
TV image (corresponding to one position of the Illuminating light plane). These points 
correspond to the parts of the object illuminated in that particular frame. The three dimensional 
positions of these poir ts are computable l)y use of the known calibration information 

Each frame contains a number of connected segments, corresponding to continuous 
surfaces of the rbjects scanned A discontinuity in the ibject surface appears as a discontinuity in 
the camera image of the laser scan The space discontinuitie also correspond to the object 
boundaries (as viewed from the particular angle) Thus the outer boundaries of an object can be 
constructed from the extremities of the connected segments in the laser scans. The notion of a 
boundary as defining the extremes of the continuous surface, agrees with the normal concept of a 
boundary (as opposed to texture or coior boundaries for example). However, in some instances of 
touching objects this process will result in boundaries which include parts of more than one 
object 

—-^ - 
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Fig. 3.4   Boundary Constructed from the Scans in Fig. 3.3 
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The processing of the input data requires locating the connected segments in a frame, 
and locating their extremities. Ideally, the points in a segment wouh connect to form a thin curve. 
However, due to several factors including the finite width of the illuminating plane and vidicon 
blooming, these points form an area, several raster units wide A "thin" curve approximation to 
this area is obtained (all laser scan pictures presented in this thesis display thinned scans). Some 
thinning techniques were presented in [Agin 721 Alan Borning has implemented improved 
thinning techniques ind they have been used for pictures here. These thinning techniques are not 
of direct interest here and no further details are provided. 

7 iie extremities of such segments are linked (by straight lines) to form a complete outer 
boundary for the objects In the scene The details of th« algorithm for constructing such 
boundaries and also the likely sources of errors have been relegated to Appendix 1. The reader 
may assume the laser scans and a b^jndaiy to be the input for the algorithms described in the 
succeeding chapters. An example of the boundary output is shown in Fig. 3.4 (from the laser 

scans of Fig. 3.3). 

The construction of such a boundary provides a useiul and convenient way of 
structuring the data. Body separation and detection of holes follow immediately from the 
boundary data (details of body separation are discussed in sec. 3.3). The boundary is believed to 
be of importance for human visual perception ([Attneave]). The description routines presented in 
the succeeding chapters rely heavily on the use of such a boundary, and this information alone is 
sufficient for many applications in-luding recognition of many scenes. The performance 
improvements of our description routines over previous work ([Agin 72]) are strongly dependent 
on our use of the boundary data ( ee Chapter 4). (Note that we do not generate descriptions of 
the boundary per se, rather descnp.ions of the volume ouMined by the boundary.) 

D 
0 

3.3 BODY SEPARATION 

Separation of multiple objects in a scene from the object boundarips is direct. These 
boundaries correspond to depth discontinuities in object space. Each isolated set of boundaries 
defines a body that is connected in space. This set contains more than one boundary if the body 
has holes. However, parts of a connected body may not always seem connected, because of 
shadow«; or occlusion. We have a partial body separation; a body may be split in more than or.e 
piece, but all separate bodies have been isolated. However, bodies which touch are not necessarily 
segmented E.g. consider the TV image in fig. 3.5, the laser scans for this scene are shown in fig 
3.6 and the boundary output in Fig. 3.7 (more examples are presented in chapter 7) The 
separation of the left doll leg from the snake is difficult in the TV image, but the separation of 
this snake from the upper part of the leg is immediate from the boundary data. Note that the 
lower part of the leg is seen as connected to the snake, as the two objects touch and no depth 
discontinuity is observed. (If the lower leg were not connected to the snake, it would still appear 
separated from the rest of the doll.) More sophisticated segmentation techniques will be requued 
for separating touching objects. The problem a re' ted to that in inferring body segmentation in 
monocular scenes and has not been investigated lere. 
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Fig. 3.6   Laser Scans for the Scene of Fig. 3.5 
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Fig.  3.7   Boundary Derived from the Scans of Fig. 3.6 
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CHAPTER 4 

BODY SEGMENTATION AND PRIMITIVE DESCRiPTIONS 

Our description scheme is ba<ed on descnbm, an object in terms of simpler sub-parts 
Generalized cones are used as primary primitives; other primitives such as pianos and spheres are 
necessary, but have not yet been implemented Generalized cones can describe arbitrarily complex 
shapes Simplicity criteria need to be specified to permit their use in segmentation. We segment 
an object into generalized cones with a "smooth" axis and cross-section function, i.e. the axis 
direction and the cross-sections along the axis change continuously Continuity is a natural basis 
for segmentation, but it is clear that the resulting segmentation into primitives will depend 
strongiy on the specification of the continuity conditions We do not expect a perfect segmentation 
for every object, in the sense in which humans would segment it. Context must be used to Join 
some segmented parts or further segment a pare at some higher level. Alternate descriptions are 
used when multiple description hypotheses are reasonable (The recognition programs examine 
the multiple hypotheses and select the one that matches best.) 

In this chapter we discuss the techniques that generate a number of alternate 
segmentations and the basis for choosing among the alternatives. The following chapter coven 
further symbolic descriptions for the selected segmentations. The body separation was discussed 
in sec. 3.?, m this chapter, we will be concerned with descriptions of one body. 

The chosen representations do not provide a direct computational procedure for 
generating segmented descriptions from the input data, unlike tramform representations, eg the 
Blum transform or the Fourier Transform (Local descriptions can be directly computed In our 
representation by fitting cones to the local data) Continuity and simplicity conditions are usable 
for examining the acceptability of a cone description. However, no a priori knowledge of the axes 
directions, axes shapes, the cross-section sizes or the cross-section functions is available. 

Our segmentation technique proceeds In two parts. First, the areas of the body that can 
be described by local cones are determined by the use of the "projecnon" technique (discussed in 
Sec 4 2) The second part improves on the axes of the local cones determined by projections and 
then extends these local cones, by allowing the axes directions to change smoothly (as discussed in 
Sec. 4.3) Such extensions allow tracing of slowly curving cones. The extensions terminate if the 
cones cannot be extended continuously, either having reached the end of the object, a cross-section 
discontinuity or an axis discontinuity. Other cone description methods are discussed in section 

44. 

A number of local cones are generated and then extended. Each extended cone 
represents a possible segmented sub-part Many local cones are likely to extend to common parts 
of a body Thus a number of alternate segmentations are suggested. We choose among the 
suggested descriptions and retain a small set of alternate descriptions. The result is not necessarily 
a unique description for an object, but neither do we wish to retain all possible combinations 
Simple preference criteria select preferred descriptions. Among two descriptions for the same area 
we prefer a long cone to a short cone, and prefer cylinders to cones Descriptions of areas 
contained in areas described by oth'-r cones are eliminated When a clear choice is not available, 
alternate descriptions are made The choice of segmentations is discussed in section 4.5. The 
selection procedures used are local Larger context, eg the context of a joint for choice of local 
descriptions  has not  been  investigated.   This has been satisfactory for scenes of moderate 
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complexity, more global choice is clearly useful.   In section 4 5, we also discuss techniques of 
redescnption of parts with more context, likely to be useful for improved descriptions. 

Our description procedures use only the boundary of the object. ~ he 3-d data has been 
utilized In constmcting the boundary from the depth discontinuities. We also use the ?-d position 
of the points on the boundary We compute only those points of a cross-section that lie on this 
boundary, and no assumptions are made about the shape of the cross-section apnon The 
remainder of the cross-section can be computed on demand. (See sec 4 1 for locating th« axis of a 
cone from only partial knowledge of the cross-sections.) The details of the cross-sections have not 
been useful, because of the limitations on the visible part of the cross-sections and the enois uf 
ranging (ree sec. 4 3). Also, we feel that the details of the interior are of secondary importance, 
useful for making finer distinctions. This is in agreement with psychological evidence about 
human perception; crude boundary information is enough for many recognition tasks ([Attneavej) 
The boundary does depend on the viewing angle, but the results produced are relatively 
insensitive to the viewing angle over a wide range Note that we do not make descriptions ot tlu 
boundaries themselves (viewed as space curves), rither of the volume outlined by the boundanes. 
Use of the boundary permits us to use the same techniques of analysis for processing data hum 
TV images only The boundary must now be obtained from intensity information. However, 
boundanes from intensity information are difficult to obtain and unreliable. The problem of 
body separation must also be solved by other means (This problem is similar to the problem ot 
separating touching objects.) 

In previous work ((Agin 72]), Agin has described procedures to generate (un- 
descriptions However, major shortcomings of these techniques limit their performance on 
moderately complex scenes, making them unusable for further extensions. His methods fit 
cylinders of circular cross-sections to ine visible surface of the object. These methods had no well 
defined notion of a part, and a cylinder would often include two proximate but distinct parts of 
an object, such as two fingers of a glove. Such errors cannot be easily corrected at a higher level 
by use of context No attempt was made to connect the separate cones to form an object in Agin's 
work. Our description process is more structured because of its use of boundary. Our techniques 
are conceptually different and their development has required a large investment of effort Th<y 
exhibit substantially improved performance, some examples are presented in sec 43 Our 
programs are also substantially faster, as we need to work only with the boundary of an object 
Also, our methods do not assume any particular cross-section shapes, whereas Agin's methods were 
restricted to circular shapes 

Each cone description is represented by a list of axis points and normal cross-sections 
along this axis. Summary descriptions for each cone include the length of its axis, the average 
width of the cross-sections and the ratio of the length to the width. The cross-section function is 
approximated by a linear function and an average cone-angle is computed. These summaiy 
descriptions are discussed in more detail In section 5.1 

.! 

I 

4.1 CONE DEFINITIONS 

The generalized cone representation has been discusssed earlier (sec. 21). The 
constraints on an axis, cross-section description were defined to be that: the cross-sections must be 
normal to the local axis and that the axis must pass through corresponding points of the cross- 
sections. Choice of centers of gravity for corresponding points was considered. 
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However   the center of gravity of a cross-secnon cannot be computed  without the 
knowledge of the complete cross-sect.on   We see only the front of the cross-sect.on. If cross-sect.on 
.hapes w8ere l.m.ted. we could ittimat« the complete cross-sect.on by f.tt.ng these vanous shapes 
An a tem t ve approx.mation would be to use the center of grav.ty of the y.s.ble cross-sect.on^ In 
th"s  mp ementanin. we compute only the two end-pomts of a cross-sect.on (those on the boundary 
bu   wThTnown three-d.men.onal pos.t.ons) and use the m.d-po.nt of the l.ne £%***™ 
end-po.nts   Th.s method of determ.n.ng correspond.ng po.nts g.ves a closer approx.mat.on to the 
enter of .rav.ty for the case of c.rcular cross-sect.ons.   F.g. 4.1(a) shows the "'» f >'ned ^ 
omme   he centers of grav.ty of the v.s.ble parts of the cross-sect.ons and F.g. 4.1(b) shows the 
xe  oba.ned from Jm.d-po.nts of the ends of the v.sible part of the cross-sect.ons.  The ax.s 

m F.g 4.1(b) co.nc.des w.th the des.nd central ax.s.  However, .n our system less than half the 
cross-section is vis.ble and the approx.mat.on is not perfect 

(a) it) 

Fig. 41    Two choices for Axis Po.nts 

For computing cone descriptions, we have taken the mid-point of the ends of the vis.ble 
part of the cross-sect.ons as our cho.ce of the correspona.ng po.nts. Th.s .s taken to be the 
definition for ax.s. cross-sect.on description,:, (i.e. we require the axis to pass through these points^ 
No e that this cho.ce of corresponding points will cause a cone ax.s to be located m somewhat 
d.fferent pos.t.ons w.th vary.ng viewing angles, though the variations will be small br **«** 
parts. Our recogn.t.on programs do not rly on the prec.se locat.on of such axes and are 

msens.tive to such var.ations. 

4.2 LOCAL CONE SAMPLES: METHOD OF PROJECTIONS 

As the first step in finding cones describing an object, we find local cones describing 
small areas of the object.   If two consecutive parallel cross-sections have the property that their 
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mid points join in a line which is normal to these cross-$-ction$. then this line and the cross- 
sections comprise a local cone by our definitions of a generalized cone. We find local cones 
satisfying these conditions, by constructing cross-sections normal to eight equally spaced directions, 
by using "prcjeciions" as described below, 

Consider a particular projection direction, say Xj. having a specified orientation with 

•espect to the object. We wish to find local cones with axis pointing along this direction Rotate 
the image (about the origin) so that X, coincides with the unrotated X-axis. Fig. 4.2 shows the 

doll of fig 34 so rotated by 45 degrees (X, is pointing horuontally). Now construct cross-sections 

normal to the rotated X,. spaced 10 raster units apart (the complete picture is 330 units wide), by 

forming pairs of points on the opposite sides of the boundary. As example see (pl,p2) and (p3,p4) 
in Fig 42. Note some cross-sections in this figure are not exactly vertical; this is because of coarse 
sampling of the boundary and lack of interpolation between boundary points If two consecutive 
cross-sections satisfy the condition that the line through their mid-points is within a specmed 
angle (22 5 degrees) of X,, we have found a local cone (actually an approximation to one) One 

local cone may contain more than two cross-sections, if other consecutive cross-sections satisfy the 
constraints in successive pairs. Fig 4.3, shows the axes obtained from the cross-sections of Fig 42. 
(The axes are shown by double lines and the associated boundaries are shown in heavy lines) 
These are the parts of the object that have local cone descriptions with the axis pointing in the 
chosen projection direction Fig. 44. shows all local axes obtained from projection in eight 
different directions for tms object (each 225 degrees apart) More program details are described 

in Appendix 2. 

The parameters used for this method were determir. -i empirically. The accuracy with 
which the axis can be determined (within 225 degrees of the projection direction in the abuve 
description) is dependent on the sparMig between two neighboring cross-sections and the expected 
random variations in the boundary Also, if the axis needs to be determined more accurately, we 
need to project in more directions. However, the techniques described in the next section for 
refining the axes directions are more efficient Four projection directions are usually adequate for 
finding ^11 local cones of interest (with the chosen accuracy range); eight directions provide 
enough redundancy. The choice of spacing of 'he cross-sect.ons along the projection direction is 
by a trade-off between the spatial resolution with wh'ch the local cones can be determined and the 
accuracy of the axis direction. 

The resulting segmentation for an object is directly dependent on the local cones 
generated by projections. The projection methods are successful in finding local cones for 
elongated parts of an object. Local cone generation for non-elongated parts (with length to width 
ratio of less than 0.5) is not reliable. 

4.3 EXTENSION OF LOCAL CONES 

The projections provide us with a number of local cones and then approximate axes 
directions In this section we describe a procedure to improve the axes directions and extend the 
cones as far as possible continuously (a concise description of the algorithms and more 
impleme 'ation details are in Appendix 2). Extensions of a cone allow the axis direction to 

change smoothly 
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Fig. 44. Local Cones Generated by Projection in Eight Directions 
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The axis refining process is iterative. We start from the list of axis points for the local 
cones provided by the projections A straight line is fit to these points to approximate the axis. 
We construct the corresponding cross-sections, normal to the axis at the axis points, by finding 
intersections with the boundary Only the end ooints of these cross-sections are computed. The 3- 
d positions of these end-points aie used The distances from the axis of the mid-points of these 
new cross-sections are computed If the mid-points lie on the axis, then the axis and the cross- 
sections satisfy the requirements of describing a cone. For real data, this requirement can only be 
expected to be satisfied approximately We accept an axis, cross-section descnpuon, if the average 
distance of the mid-points from the axis is less than a threshold. (This threshold is set to the ?-d 
distance corresponding to 2 raster units, and is related to the expected random variations in 
determining the mid-points) If the threshold is exceeded, we fit a straight line through the mid- 
points of the new cross-sections to define a new axis and iterate The number of allowed 
iterations is set at 5 (we accept the resulting axis, cross-sections after 5 iterations). This process 
diverges when the axis direction changes to the extent that new cross-sections can not be 
Generated by computing intersections with the parts of the boundary that the process began with 

Convergence of this iterau e process is easy to see for a circular cylinder or tone for a 
wide range of starting directions. For a straight circular cylinder, consider starting with any set of 
parallel cross-sections, the line joining their mid-points immediately converges to the desired axis 
Similar convergence follows for a regular cone, but for more general cones the precise convergence 
criteria have not been worked out. Empirically, the described process has been found to conveit;e 
for elongated p^rts. When convergence fails, it is cone'. Jed that the part has no good description 
as a cone with the axis in the prescribed direction. Tins part may be later described as a cone 
with some other axis. Some areas may have no good descriptions in terms of cones and no cone 
descriptions might result for them. Description of such parts requires other primitives and is not 
considered in this work. 

Cone Extensions 

Once an axis, cross-section description of a part is fou.id, we try to extend the cone 
continuously over a larger part of the body. We extrapolate the axis at either end by a small 
distance (the choice of step size is discussed later) A cross-section normal to the local axis is 
constructed at this point and its intersections with the boundary are computed. If no intersections 
can be found extension terminates (This indicates an end of the object or a sharp turning of the 
boundary) 

Tests are made to determine whether this cross-»ection is acceptable as follows The 
distance of its mid-point from the extrapolated axis is comp ited If this distance is larger than a 
threshold (3-d distance corresponding to 4 picture units) then we make a modified guess at the 
extrapolated axis, by including this new mid point and recompute a normal cross-section 'We 
have found it satisfactory to just tcept the new recomputed cross-section and not iterate on this 
phase.) Fig. 4.5 shows an extended cross-section on a curving cylinder that is na acceptable, but 
provides a new direction for ihe axis and a new acceptable cross-section. This procedure allows 
us to trace the axis for a smoothly curving object. 

The new coss-section is then tested for continuity of width with the previous cross- 
sections (the continuity evaluation is specified later).  If the new cross-section is acceptable, further 
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EXTRAPOLATED 
CROSS-SECTION 

EXTRAPOLATED 
AXIS 

NEW  AXIS 
DIRECTION 

CORRECTED 
CROSS-SECTION 

II 

Fig. 45   Extermon of a Cone 

extension .s attempted by iteration of the above described process If a discontinuity is detected 
than the extension terminates. (Actually, before terminating, extension at half the initial step size 

is attempted.) 

As example, when the local cones of Fig. 4.4 are extended this way. cones of Fif. 46 
result (the axes of the cones are shown in this figure). Note -he multiplicity of cones particularly 
for the head For the other parts, various local cones have converged to nearly identical cones and 
are -rely distinguishable in the figure Each cone offers - potential segmented sub-part (choice 

of ^mentations is discussed in sec 4 5) 

After termination of a piece, a check is made to see if the end of the object was also 
reached We check whether the part of the boundary beyond the last cross-section is largely 
contained in a small extension of the cone. Part of the boundary may be beyond the last cross- 
section in the 2-d image but not in three-dimensional space. One instance of this is when a cone 
is terminated by a p'ane face. Example, see Figs. 4.7 (shows generated cones) and 4.8 (shows laser 
»cans), the plane face on the hammer head is detected as a termination for the cone describing the 

head (piece PI). 

This extension method is id hoc. and the choice of parameters used determines how far 
a cone will be extended. PwcUi propertl« of the extended cone are difficult to determine and the 
success of the method has only been tested empirically The following discusses some effects of the 

parameter choices. 

The step sire used in the extension process is important. We choose the step size to be 
proportional to the radius of the cylinder at this point ( 0.05 »the current radius, bounded by an 
absolute minimum and maximum step size). We expect to find elongated pieces and hence wider 
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Note: Two 
different cones 
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Fig. 46   Axes of Extended Cones for the Doll of Fig. 4.2 
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Fig. 4.7   Cones for a Hammer 
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pieces are also expected to be longer. If extension fails we reduce the step size by a half and try 
again. If this fails too, we stop Obviously, many sma.er step sizes could be tried, at the cost of 
additional computation The local axis direction is determined by fitting a straight line to a small 
number (5) of nearby axis points These methods allow us to trace slowly curving parts of a oiece 
but may fail when the curvature is large Higher level routines evaluate such segmentations and 
two disconnected parts may be connected based on context. 

Evaluation of the acceptability of a new cross-section is designed to detect drastic 
discontinuities and context must be used for finer distinctions. A parabola is fit to a small 
number of previous cross-section widths and the width of the new cross-section is predicted The 
actual w.dth is allowed to differ from thtl predicted width by a fixed proportion (0 25) 
Boundaries constructed by our programs are frequently slightly jagged, because of misalignment 
of two laser scans and errors in computing segment end-points (see Appendix I). This forces us to 
relax the continuity conditions for a cone, to avoid termination because of these small bound, v 
fluctuations. UMUU«^ 

No explicit checks are made for the slope of axis to be continuous. If the cone curves 
too ihtrply we find no boundary intersections for the extended cross-section and the cone 
terminates Thus cones with an elbow, e.g. a human arm (see sec. 5.2 for elbow lomts) will be 
segmented at the elbow depending on the curvature of the axis there. The next level oroPrams 
are aole to discover a segmentation at an elbow, and generate an alternative description mergin. 
he two (sec 4.5). The converse process of segmentmg a cone at the elbow has not been used in our 

system, its implementation is direct. 

The thresholds for cross-section continuity and step size were picked intuitively and 
adjusted empirically A more analytical approach to such choices is not clear. Perhaps s.nele 
thresholds  are not sufficient and  alternate descriptions with different thercsholds  would  be 

fh 
P u M TT' We bel,eVe that a general proSram should be 'nsens.t.ve to the choice of such 

thresholds. At least a partial solution is in the use of wider context for making segmentation 
decisions, such as later merging of two pieces separated at this level. 

Choice of such segmentation criteria is a general problem that occurs in many domains 

It T; appr°';raticris t0 a curve We can do a better *v™™™ u ^ ™ ^ at the 
whole data globally, rather than just use local continuity criteria We will then be able to make 
some use of context In deeding on the segmentation points. In the present case, this may be 
accomplished by using very loos.? constraints in cylinder tracing and then further segmentine the 
resultant piece. We may use 'he techniques commonly used for fitting straight Ime segment! 
[Duda, chapter 9]). to the axr and to the cross-section function, Usually, thes^ methods aCp 

to keep the maximum error .ithm a specified bound Further segmentation decisions are 
meaningful only in the context in which they are to be used and hence must be made by the 
routines that use this segmentation data y 

Extensions are found for all local cones suggested by initial segmentation. Thu, many 
parts of the body will be irJuded in more than one description. This allows us to comoare 
alternatives and choose on the basis of wider context (see section 4.5). 

These cone desenpeon routines only need to compute the end points of the cross- 
sections. The computation of the interior points of the cross-sections from the surface ran« data ■s 
straight forward.   We have not used these interior points because of the difficulties in using 
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detailed description of the cross-sections in our system. Only pai\ of these cross-sections is seen 
The light source and the camera axis form an angle of 30-60 degrees, limiting the visible part of a 
circular cross-section to 120 degrees. Also, the cross-?ections are small for objects of a size 
conveniently used with our scanning apparatus. The visible part of these cross-iections is nearly 
flat and the ranging errors become significant in the description of their shape W-: use perceived 

width as the basic descriptor. 

Somt summary descriptors are used to describe the gross shape and the size of a piece 
We have used the length of its axis, the average cross-section width, the ratio of the length to the 
width and an average cone angle. More details on symbolic descriptions of the pieces are 

presented in section 5.1. 

Performance 

We present results on some scenes that were also used bv Agin in previous work ([Agin 
72]). Figs 4 9 and 4.10 show the results of our programs on a glove and a horse. Agin's 
description programs merged parts of the index finger and the little finger in the glove, and the 
body of the horse extended to include the tail (we have not reproduced the pictorial results of 
Agin's work). Our description methods join the vhucus cones to form complete objects as 
described in chapter 5, whereas Agin's descriptions only described isolated parts Our program,, 
are also substantially faster, as we need to work only with the boundary of an object. Also, our 
methods do not assume any particular cross-section shapes, whereas Agin's methods were restricted 

to circular shapes. 

Our programs give satisfactory performance on scenes of complexity illustrated here 
(more examples will be presented in chapter 7). If a sub-part is elongated, it is well described by a 
cone and our programs are usually successful in finding such descriptions. Some extensions, such 
as when other sub-parts interfere, cannot be made properly without the use of this contextual 
information (sec. 4.5). This advice is best supplied from the higher level routines. A weakness of 
the programs is the failure to verify that the computed cone description in fact describes a cone. 
We may describe a plane surface as a surface of a cone whereas it may be better viewed as a 
termination of some other cone or just a flat surface. Design of special routines to detect such 
cases needs to be investigated 

4.4 OTHER CONE DESCRIPTION METHODS 

Iteration is 'red for accurate location of the axes of cylinders in the methods of the 
previous section. An alternative to iteration is to find a best cone that fits the given bounda.y 
segments The cone axis must be constrained to a certain form such as straight or parabolic, and 
the cross-section function may be limited to be linear locally. A best fit in the least square sense, 
with these constraints, will give us the axis and cross-section function directly. 

Differential Geometry ([O'Niell]), is concerned with descriptions of surfaces located in 
three dimensional space and may be relevant to the generation of the desi.ed cone descriptions. It 
characterizes surfaces by a small number of variables, mainly using local curvature. The author 
briefly investigated the use of principal curves, which are the directions of minimum and 
maximum curvature.   The temptation of using the principal curves lies in the fact that they are 

■MM ■  - 



4.4 OTHER METHODS 35 

.1 

.! 

.! 

.; 

I 

Fig. 4.9   Cone Descriptions for a Clove 
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Fig. 4.10   Cone Descriptions for a Horse 
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inrriruic to the surface, and are not sensitive to obscuration or viewing angles (the visible part of 
them of course is). For the case of circular cylinders and cones, maximum curvature curves 
coincide with our choice of cross-sections. However, for more general cones, no such simple 
relations exist. Eg for an elliptical cone, the maximum curvature curve is not even planar. (This 
curve can be easily constructed by observing that it must be normal to the generating line in the 
tangent plane, as two principal curves are always orthogonal. The principal curve goes towards 
the apex starting from the major axis and returns after reaching the minor axis) 

Computation of curvature requires the use of second derivatives of the local surface, 
and can be strongly affected by rang.ng errors We experimented with programs to search for 
directions of minimum curvature by defining "average" curvature over a short distance The 
average curvature along a given direction over a chosen length was computed by measuring 
"bending" defined as the maximum excursion of surface points in between, from the line joining 
the given end-points Moderate success was obtained for those parts of an object that were 
elongated. For such parts the curvature changes slowly, and the measurement of average 

curvature is better justified 

The author was unable to find any simple relations between the chosen generalized cone 
representations and the entities used in Differential Geometry For this reason and the above 
stated difficulties of computing H.nvatives, the subject was not pursued further However, the 
principle curvature directions may still be useful in choosing among alternate descriptions, e.g. in 
choosing a preferred axis direction for a thin disk (the elongation direction is nor the preferred 

direction here). 

4 5 CHOICE OF SEGMENTATIONS 

The cone description routines generate a number of possible sub-parts Many of these 
cones share common parts of the object and hence are not all compatible with one another (eg 
sec the various cones for the legs and the arms of the doll ! Fig. 4.6) However, some 
segmentations are more appealing, intuitively, than others We aim to choose a small number of 
segmentations into sub-parts, the sub-parts in one segmentation :-»eing compatible. We prefer 
cylindrical and elongated descriptions Pieces with length to width "IO lower than a threshold 
are discarded, provided they overlap with some other pieAs. 

The simplest form of overlap occurs when a part is described more than ence because 
the cone extension programs starting from different local cones, converged on nearly the same 
cones Eg see the two cones describing the left arm of the doll in Fig. 4.6 (the axes of the two 
cones overlap a lot and are barely distinguishable in the figure) The various descriptions here 
are equivalent and we may choose any one. We prefer the longest cone. Some cone descriptions 
are terminated prematurely, due to a local discontinuity of the boundary. Another cone describing 
the same area may not be broken. If a cone is completely or largely included In another cone, we 

retain the containing cone only 

Another class of conflicting descriptions is caused by the effects of corners. Consider the 
two dimensional example of a rectangle. Fig. 4 11, showing axes of various cones by dashed lines. 
It may be described by cylinders with axes along the sides, or by axes bisecting the corners 
Among the cylinders with axes along the sides, we choose the more elongated one, i.e. one having 
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Fig. 4.11   Different Cones for a Rectangle 

the larger length to width ratio. The "corner" cone is included in the longitudinal cylinder, or 
Mnall extensions of this cylinder. The latter case occurs when another cylinder is present near the 
corner and prevents the longitudinal cylinder from extending to the end. We choose to ignore the 
description which is contained in the other. More details of these computations are provided near 
the end of this section 

Sometimes, no clear choice can be made between two alternate piece descriptions. E.g. 
the head of the doll in Fig 46 is nearly spherical and many axes directions are equally good. In 
such 'ases we may retain the various alternatives and make multiple descriptions (this example 
should reaily be described by a sphere primitive). Current programs pick one of the alternatives 
only, but the data structures allows easy addition of alternates. (Note the following describes an 
instance where we do use alternate descriptions) 

Application of the above selection criteria results in the selected segmentation of Fig. 
4.12 for the doll of Fig 4.6 (the algorithm is stated precisely in Appendix 2). Note the parts in 
Fig. 412 are numbered in an arbitrary order. Both arms and legs are described by more than one 
cone each initially Note that the small cones describing the feet of the doll were computed to be 
contained in the leg and do not appear in the final choice Cone P6 describing the top of one 'eg 
was not judged to be included in the extension of P6 (but an alternative description merging the 
two is also generated as described in the following). The shoulder piece in Fig 4.6, is contained in 
the extensions of the body piece and hence does not appear in Fig. 4.12. Such computation is not 
very robust.  Shortly, we descnb» : technique of redescnption which would be more reliable 

Use of local discontinuities for making termination decisions in tht cone description 
process results, sometimes, in premature termination. A part is thus broken into two parts 
separated by a small discontinuity between the two parts. If such two parts extend into each other 
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Fig. 4.12   Selected Cones from fig. 4.6 for a Doll I 
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continuously we generate an alternative description that rt^tes a new part combining the two 
parts For example in Fig. 4.12. P5 and P6 are merged into a single part Such decisions to 
consider this entire volume as one piece can not be made by our primitive description routines, as 
they look for local discontinuities only, and have no notion of an isolated, small discontinuity. 
(This merging actually takes place after "joints" of selected pieces have been computed. Joints are 
discussed in sec. 52 and the details of merging in section A2.2B of appendix 2) 

Extension of some pieces is terminated by the interference of other pieces attached to 
this piece The extended cross-sections begin to include parts of the other pieces. For example in 
the description of the doll in Fig. 4.6. the piece describing the body of the doll does not extend 
into the shoulder area, the extension being inhibited by the presence of the arms. Descriptions of 
such pieces can be improved by redescnbing the cone primitives using a modified boundary, 
generated by "cutting off" interfering pieces. This redescnption technique has not been 
implemented; use of the boundary by the cone description routines permits a direct 
implementation. Some redescnptions of primitives may also benefit from being guided by more 
specific information provided to the cone description procedures, such as a prescribed axis 
direction or the cross-section widths. 

Another example of alternative segmentations and chosen segmentations is shown in 
Figs. 4.13 and 4 14 More examples of final segmentations are presented in chapter 7. 

In the rest of this section are presented some details of the programs used for selection 

of segmentations. 

The extent of a piece is defined by the boundary segments of its two sides. We use the 
boundary segments to determine the amounts of overlaps of two pieces Boundary overlaps are 
easier to compute, but not as closely related to the desired geometrical computations as area 
overlaps E.g in Fig. 4.13, the doll body is described by two cones with nearly orthogonal axis; 
these cones share substantially the same area but no common boundary' (Correct choices were 
made in this case, only because one of the pieces was discarded due to its very low length to width 
ratio) Normally, the area computations require significantly larger amount of computation than 
the boundary computations. However, when evaluating the area overlap of two cones here, the 
approximations of the cones by their axes points and cross-sections are already available, i.e. me 
areas to be compared have been segmented in sequential trapezoidal strips. This reduces the 
complexity of the required computation W< have used boundary overlaps, but judge the 
implementation of area ove/iaps necessary for increased performance in further work. For this 
implementation, a cone is consiJored to be completely included In another if a large part (> 0.75) 
of boundary segment of its two sides is included in the other 

If complete inclusion does not occur, the maximum distance of one conflicting piece 
from the other is computed. If this distance is a small fraction of the length of the including piece, 
then inclusion is assumed If only one side of a p^ece is included in the other, but the piece is not 
elongated or is very conical it is eliminated. 

These overlap resolving methods are simp.e but work well for our examples We expect 
significantly better performance if the techniques of redescnption by removing some parts and the 
computation of cone overlap by using areas instead of boundary were to be used. Addition of the 
redescnption techniques would not require any modifications of the COP? description routines, they 
need to be ;:mnly supplied with modified boundaries   Interfering p? :s can be easily determined 
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Fig. 4.13   All Extended Cones for Scene of Fig. 3.5 
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Fig. 4.14   Selected Cones from Fig. 4.13 
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when the joints for this piece are computed (sec. 5.2).  However, we must make judgements about 
which pieces are already well described and can be cut-off. and which others need redescnption. - i 

Q 
46 OTHER DESCRIPTIONS OF PRIMITIVES 

We have discussed the description of objects by generalized cone primitives. Some 
objects or some parts of these objects are not well described this way and other primitive 
descriptions must be used. These additional primitives may be used in conjunction with cone 
desciiptions or may be completely independent. We will discuss only a few additions that may be 

found useful in further work. 

1. Planes. Planar surfaces are frequently present in machined objects and  are not 
necessarily parts of cylinders. Sometimes, they occur as terminations of cylinders and our methods . | 
are able to notice this, i' the terminations are nearly orthogonal to the axis.   More generally, we 
should identify the plana; parts of the surfaces and evalu?te whether they form terminations and 
their suitability for being described as parts of cylinders. [ ] 

2. Spheres and Bowls: Spherical objects may be described by an axis, cross-section 
description, but no preferred axis directions exist and it is simpler to describe them as spheres. 

?. Holes; Holes may be described by describing the volumes enclosing them or sometimes 
more conveniently as negative volumes Description of negative volumes is the same as that of 
positive volumes and the same description methods apply. In particular, holes may be described as . 1 

negative cylinders. 
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CHAPTER 5 

SYMBOLIC DESCRIPTIONS 

From the chosen segmentations of an object, we aim to generate structured, symbolic 
descriptions attempting to capture the "important" shape characteristics of the object The 
descriptions contain enough information for recognition of the objects and for indexing into a 
visual memory for similar objects. Other uses for these descriptions may be in computations for 
manipulation, stability or for acquisition of models. We consider the ability to generate useful 
symbolic descriptions as the central issue of this thesis. Utility and performance of programs for 
applications, such as recognition, depend directly on the ability to generate (and manipulate) these 

descriptions. 

The segmented parts connect at jointi. The joints and the parts determine the structure 
of the object. Description of this connectivity structure is a major component of the object 
description Object descriptions contain descriptions of the parts, the joints, and their 
relationships, using global as well as local properties. The local descriptors provide deu-ls of the 
individual parts, and their shape. Joint descriptors depend on the angular, positional and thi size 
relations of its constituent parts. Global descriptors depend on relations among larger number of 
parts; eg   the detection of bilateral symmetry in an object structure. 

A major goal of thes? descriptions is to aid in recognizing an object as belonging to a 
class of models, and to be able to make detailed comparisons within a class. The structure is the 
most important descriptor used The details of the parts are used to make finer distinctions. The 
descriptions are hierarchical; varying amounts of detail can be added to the basic descriptions. 
Our descriptions of the joints and the pieces are limited because of the problems of using 
descriptors that are not invariant with viewing angles and limb articulations, and because of the 
need for better low level (cone description) routines to allow better symbolic descriptions. 

In our system, only cones have been used for describing parts. These cones are allowed 
to attach to the other parts of the object, to form joints, at each end only (no joints along the sides 
of two cones are allowed). Such joints can be defined by an area not included in any piece 
description A number of pieces are connected to a joint. Connectivity of various parts is easily 
inferred from the boundary. Connectivity relations are a very central part of the descriptions of 
an object. Some parts are partlv shadowed and their connections to other parts are not directly 
known. They appear isolated ai.d we must hypothesize their connections. (E.g. two legs of the 
horse in Fig. 4.10.) We have implemented simple hypotheses mechanisms, other mechanisms are 
suggested (see section 5.4). These hypotheses arc further examined in the process of matching 

with models. 

Different pieces and joints are represented as symbolic entities Connectivity relations of 
the object may be viewed as graph relations with joints as nodes of the graph and pieces as the 
arcs between them or vice versa. E.g. the graph structure for the doll of Fig. 4.12 is shown in Fig. 
5 I.   (This graph shows pieces P5 and P6 as merged into one.   The "B" and "H" pieces are 

Idiitinguiihed as explained later) The graph shows the two arms and the head of the doll joined 
to the body at one end and the two legs joined to the other end. (Note, the information about 
connection of the head to the body is missing in Fig. 4.12; the graph shown here is idealized.) 
Various descriptors are attached to both the joints and the pieces. Relations other than 
connectivity also exist between various pieces and joints. Data structures for symbolic descriptions 

pi are presented in Appendix 3. 
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Fig.  5.1    Connection Graph of a Doll 

Descriptions are generated for the pieces and the joints of an object. Details of piece 
descriptions are limited by the rather sparse data that is available for cross-sections. The axes of 
pieces are not so accurate near the ends of the pieces, because of the effects of other connecting 
pieces; this affects the accuracy of the piece descriptors and also the joint descriptors which rely 

on the angle between the pieces. 

Major descriptors for a piece are based on its relative size. We use the length of its 
axis, the widths of the cross-sections, and the ratio of the axis length to average cross-section 
width (elongation). The cross-section function is approximated linearly. This is equivalent to 
specifying ?n "average" angle for the apex of the cone. Some qualitative descriptors such as 
straight axis conical or cylindrical, regular or irregular are computable directly from the piece 
axis and cross-section data, but have not been used. 

Joints are described by the relationships of the parts attached to them. Angular, 
positional and relative size relations of the parts are used. The number of pieces at a joint and 
their relative sires are noted. The type of a joint is described, for example a T-joint or a neck 
joint. However, these descriptions are not invariant to limb articulations, making their utility for 
recognition programs very limited. The different joint types aim to reflect different possible 
physical constructions for the joints, but the inference of the constructions from the descriptions is 

difficult. 

The global descriptions aim to describe the important characteristics of the whole object 
or of some large portions of the object. It is common for a large number of narrow parts to attach 
to a wider part, in natural as well as man-made objects. E.g. the arms and the legs of a doll attach 
to the body.   As a consequence it is useful to consider a a size hierarchy based on the widths of 
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the cross-sections of a part. The largest part is at the lowest level and attached parts at successive 
higher levels. The matching process need only natch pieces at the same level (In an occluded 
scene, only the relative levels may be known. Tl en matching between different levels has to be 
tried, preserving the relative order.) 

Our implementation of size hierarchy is in computing the large pieces of the object and 
considering these to be distinguished. Other distinguishing characteristics for a piece can be 
defined; we use the property of a piece being very long, in comparison to other pieces of the same 
object, eg. the handle of a hammer. These distinguished pieces help in making immediate 
correspondences between two descriptions during matching for recognition; the matching process 
starts by matching pieces with similar distinguishing characteristics. 

Planes of bilateral symmetry for an object are searched for. Tests for similarity of two 
pieces are based on th?ir gross properties Knowledge of distinguished pieces helps In limiting the 
search for symmetry planes, as these pieces have few or no symmetrical pairs. Symmetry 
computations are complicated by occlusion Some parts may be hidden completely or partially. 

Appendix 3 includes the details of the data structures used for symbolic descriptions. 

"U PIECE DESCRIPTIONS 

Summary description! for a piece are used to describe the size vid the gross shape of a 
piece. Such descriptors, 'Oth qualitative and quantitative are useful for qt ck, crude matching of 
two pieces. These descriptors are computed from the more detailed axis, cross-se^tion descriptions. 
The axis has been represented bv ^ hst of points that define a space curve and th< cross-sections 
by their end-points.   This de- iformation can be used for point to point matching ct two 
pieces. 

The important size summary descriptors used are the axis length, the average cross- 
section width, and the ratio of the length to the width. Elongated pieces (length to width ratio > 
3.0 ' \v) are of particular interest. They are "well defined" and unlikely to appear spuriously in 
des«, .ptions A linear approximation to the cross-section function is made. This corresponds to 
fitting a linear cone to the piece and the cone angle is used as a descriptor. Matching procedures 
use the cone angle to differentiate between cylindrical and conical pieces. We also retain 
information about the ends of a piece, consisting of the location and the direction of the local axis, 
and the local widths of the cross-sections. 

In the following we suggest some techniques that would be useful for further 
descriptions of the cone axes and cross-sections. These have not been implemented in our system 
and the reasons for not using them are given. 

The axis of a part is a curve in three-dimensional space and normal curve description 
techniques are applicable to its description. The axis may be approximated by a set of curves, 
such as straight lines or splines.  Choice of the segmentation points, or the positioning of the knots 
in   the   spline   fit   case,   is   crucial   to  good   description   Segmentation   points   should   be   at 

1] discontinuities; points of inflection and high curvature change are obvious choices. 
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The cross-sections are a planar area, they may be described by segmentation of this area 
into two dimensional "cone" primitives, in a manner analogous to the segmentation of three 
dimensional objects. In fact, the same programs can be extended to handle the two dimensional 
case Such segmentation would permit us to handle complex shapes for cross-sections with 
discontinuities and corners, as in a fluted cross-section, for example The cross-section function, 
is the function describing the changes in the cross-sections along the axis can also be described 
by segmentation, say by piecewise linear functions. Currently, we approximate the cross-section 
function by a single linear function 

Such techniques for describing the axes and the cross-sections are useful. However we 
have not concentrated on these, believing that they represent independent numerical analysis 
problems, not central to the problems ot object description. Also, the data about the cross-sections 
in the present implementation is limited, and the segmentation procedure is likely to be unreliable. 
Some gross shape propeities about the axes, and cross-sections, such as straight axis, conical or 
cylindrical part, regular or irregular, convex, flat or concave cross-sections can be obtained 
directly, but many of these descriptors require the use of a threshold judgement, e.g. between a 
straight and a curved axis We have not used such descriptors either. 

5.2 LINKING OF PIECES AND JOINT DESCRIPTIONS 

In our representation, we are interested in describing the joints between different parts. 
The description of parts has been restricted to generalized cylinders; we further testnct a cone to 
join the other parts at one of its two ends only. This is rather restrictive, e.g. a hammer cannot be 
described as a handle connecting to the middle of the hammer head, but the head needs to be 
described as two pieces which connect at the handle. However, this restriction has not been very 
important for the objects considered here and leads to a very simple algorithm for connecting 
pieces. Other ways of joining parts can be easily added. 

For this situation, a joint is adequately defined by an area which is not included in any 
piece descriptions, and by the pieces which adjoin this area. The construction of a joint area is 
very simple using the boundary: we start at one end of some piece and move along the boundary 
until we come to another piece; then skip across the new piece and continue along the boundary in 
the same way until we have returned to the starting point. Our path defines the joint, it consists 
of ends of pieces and boundary segments between them. These boundary segments are null if the 
adioming pieces overlap. In an extreme case, where all connecting pieces intersect, the joint area 
may be zero. We find new joints until ends of all pieces that do not terminate at the end of an 
object have been included. Fig 5.2, shows the joints obtained for a doll, from the pieces shown in 
fig 4 12 in this way (the joint areas ate shown shadowed). Note that the joints Jl and J2 are 
between pieces that do not overlap, joint J3 is between two overlapping pieces and joint J4 has 
only one attached piece (this piece failed to extend to the end of the leg). 

Symbolic descriptions of a join' contain the order of pieces connected at a joint and a 
dominant piece, which is the widest piece of the joint The order of pieces is not invariant to 
viewing angles since the parts are connected on a two dimensional surface, which does not have a 
useful invariant ordering However, for many objects, particularly when the parts occur along a 
plane curve, the order is preserved for other viewing angles; our recognition programs assume this 
order preservation 
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Fig.  5.2   Joints between Pieces of the Doll of fig. 4.12 
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In the following, we describe other joint descriptors that were implemented but have not 

been used in recognition for reasons stated later. 

We describe the joints by "types", however these classes are not mutually exclusive, and 
new type additions can be made without affecting the old ones. We have tried to define joint 
descriptors that correspond to different ways the joints are formed in the physical construction of 
objects.  However the inference of the construction from the descriptions is not well understood. 

A catalog of various descriptors and their definitions follows; 

T-joint: Two pieces are collinear and continuous and connected to a third, non-collinear 
piece. The two collinear pieces are allowed to appear merged in a single piece (Fig. 
5.3a).  An example is the joint of a hammer handle to its head. 

Fork Joint; One piece is "opposite" all other pieces, i.e. a half-plane separa es this one 
piece and the others (Fig 5.3b)   An example is a human hand. 

Neck joint: Two pieces with different cross-sections, but with axis continuity (Fig. 5.3c). 

An example is a human neck 

Elbow joint: Two similar but non-collinear pieces (Fig. 5.4d). Examples are human 

elbow and knee 

Cross-section Conservation: between a large piece and attached smaller pieces (Fig. 5.3e) 
Eg both human leg cross-sect'ons are conserved at the torso. 

Coplananty: All constituent limb axes are coplanar. 

Programs for computing the joint descriptors follow the above definitions directly. 
However, some approximations must be used, partly for lack of complete information in a scene 
and partly to be insensitive to the errors of low level descriptions. The axis directions are ill 
defined near the ends of a piece; hence angular judgments are inaccurate. We see only part of the 
cross-sections and use the perceived width for those descriptors that need cross-section 

information. 

Collineanty of two pieces must be computed for T-joint descriptions. We use the 
continuity of axes directions and cross-section widths Continuity of boundary near and between 
the ends of the two pieces would provide a better continuity check (the boundary on one side of 
these two pieces must be continuous for a T-joint). Loose constraints (upto 30 degrees) are used 

on axes directions for determination of collineanty. 

Of the abov» joint types, the fork and the coplanar joints aie dependent on the limb 
articulations. Also, our con»» description routines do not always provide satisfactory axes 
directions near the jon ts. These descriptors would be of obvious value for non-articulated objects 
or in some cases where the articulation limits were known. Determination of cross-section 
conservation requires seeing all the pieces of the joint. These reasons have prevented the use of 

joint types for recognition. 

If the object is known to have a T-joint formed by connection of one piece in the 
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(b)  Fork Joint 
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(c) Neck Joint (d)  Elbow Joint 

(e)     Cross-section Conserving Joint 

Fig. 5.3   Different Joint Types 
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middle of another piece, then this descriptor is invariant and could be used for recognition. In the 
current implementation, our models do not have such information. 

5.3 OBJECT DESCRIPTION 

"he descriptors used for individual pieces und joints have been discussed; we a'so make 
descriptions for a complete object. These descriptions aim to capture the important features of 
m?ny pieces and joints of the object and their relationships, and be useful for recognition. The 
connectivity relations between pieces and joints are known; we have a description of the object 
that may be viewed as a graph structure. We now aim to characterize the important parts of this 
structure. 

Simple descriptors are the number of joints and the number of pieces The number of 
elongated pieces (length to width ratio greater than a Threshold) is also used, since it is less 
sensitive to segmentation differences (but still subject to variations caused by occlusion). 

The large (. leces in an object description are (lisdnguished. as there are only a few of 
these, (If iimbs are formed by a large piece splitting off into many pieces, it results in a clear 
discrimination between larger and smaller pieces.) The pieces can also be distinguished by other 
characteristics, we have used the property of a piece being more elongated than the others, eg the 
handle of a hammer. Only similar distinguished pieces may be matched for recognition, allowing 
for efficient matching between two descriptions (see chapter 6). 

We note whether a distinguished piece has pieces attached on both ends; their number, 
and their sizes relative to the distinguished piece. If pieces at one end of the piece are very 
different than at the other, such as being at least twice as wide or twice as long, this description is 
also associated with the distinguished piece This helps in "orienting" the distinguis! d pieces in 
matching 

Bilateral symmetry is often found in natural and man made objects, and planes of 
bilateral symmetry are useful descriptors. For a bilaterally symmetric object, sub-parts must occur 
m symmetrical pairs, unless they lie along the plane of symmetry If the axes of all parts of an 
object are coplanar, this common plane is also a symmetry plane (front/back), such symmetry 
planes are not of much interest and are not described. The distmguishec pieces of an object do 
not normally have a paired piece In this case the symmetry plane must pass through the axis of 
this piece, or be normal to this axis and divide the distinguished piece in symmetrical halves 

The search for symmetry planes is confined to those passing through the axes of the 
distinguished pieces At each end of the distinguished piece we look for symmetric pairs of limbs 
The symmetry plane must pass between a symmetric pair Once such a pair is found, the 
symmetry plane is constrained. If more than one pair of limbs is symmetric to each other, a few 
alternative planes are possible. We only need to test the symmetry of other limbs relative to these 
planes.  This aids in determining the connections of shadowed limbs (Cf sec. 5.4). 

To evaluate object symmetry, we Vieed to evaluate limb similarities. We have only 
simple descriptors for individual pieces The similarity test is based only on the lengths and the 
widths of the limbs. Matching of two pieces by comparing their cross-sections at each point along 
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their axes would give better discrimination Articulation of limbs is allowed, this articulation need 
not be symmetric thus the bilateral symmetry computations are limited to using the attachment 
points. Some parts are shadowed and their attachment is unknown, we include them in symmetry 
evaluations using the hypothesized attachment points (Cf. sec. 6.4) If symmetry is «bund, it 
provides further weight for connections of &! shadowed parts. However, similarity of the limbs 

in shadow io ire other limbs is difficult 10 dt^Tnine. 

Our evaluations for symmetry are admittedly crude, however  it  is felt  that  when 
symmetry is discovered, it is not likely to be accidental and can be a useful descriptor. 

.: 

a 

M LINKING OF SHADOWED P^RTS 

We have a partial body sep^ntion into groups of connecte-l pieces Some pieces have 
no connections, because of occlusion and shadows E.g. two of the legs of the horse in fig. 4.10. 
Connectivity of these pieces cannot be known directly, we can only hypothesize possible 
connections. The shadow regions are known from the knowledge of the position of the light 
source. Clues for connections are obtained from proximity and symmetry Semantic knowledge 
such as stability and support relations would be helpful. Some objects will not be stable without 
the connection of isolated parts, eg a horse cannot ^tand on only the right front and the right 
rear leg The stability problem is difficult since only the front surface of the object is seen We 

have not used stability considerations 

If multiple objects are present in the scene, we must estimate what body an isolated piece 
is connected to. Even if only one object is known to t« in the scene, we must estimate its 

attachment pomts. 

The light beam and the camera axis are not collmear A point in space is invisible if it 
Is occluded from either the camera or the laser view. Some improvements could be obtained by 
using a camera image in addition to the laser scan data. Th? position of the light source is 
known and the shadow regions are computable. The parts thai cast shadow on other parts are 
also known The connection of the isolated part to any other part mu:t be through a shadowed 
or an occluded region. However, this does not uniquely determine the connections. Use of 
monocular inf-'mation, using the surface description from the visible part could help resolve 

some ambiguities. 

Let us consider the case where only one object is piesent in the scene, if more than one 
object is in the scene, we make hypotheses about connections to each objret in the scene. We 
restne' ourselves to finding connections of the shadowed limbs to the existing joints only, more 
general procedures will clearly be needed for further extensions of this work Shadows are likely 
to be caused when th?re are many limbs at a joint The distance of an isolated part from all 
joir,^ of the object is found, and the nearest one is p^ked. This joint is hyputhesi aa to be the 
att?chment of this isolated piece Verification by extending the isolated piece to intersect the 
proposed joint is not used because of imprecise knowledge of axis direction near the end. 

particularly for a shadowed limb. 

Hypotheses generated by proximity analysis are used when computing bilateral 
symmetry  (Cf.  sec.   5.3).   If symmetry  is  found,  we  interpret  it   as  further  evidence  of  the 
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fiypothesized connections These connection hypotheses are taken as only weak evidence for 
linking Thus, for the purposes of recogmticn, we ignore the isolated pieces first, and try to verify 
the connections suggested by the model (this assumes that a '.orrect model is available). If the 
programs were acquiring models without human assistance, we would want to use multiple views 
(matching of two descriptions is discussed in sec 6.2). 

For analysis of heavily occluded scenes, where few connected structures are found 
initially, more sophisticated mechanisms for hypothesizing connections will be necessary Some 
segmentation and line completion techniques from the work on the analysis of polyhedral objects 
ate applicable Edge and cross-section continuity provide evidence for connection and T-jomts 
suggest segmentation. Eg in fig 4.14, the left leg of the doll is split in two parts because of the 
occlusion caused by the snake and hypotheses for connecting them could test for continuity (here 
the problem is further complicated by the touching of the snake and the lower part of the leg) 
We have not made any attempts at such analysis and consider it a prime problem for extensions 
of tins research 
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5 5 JOINT/PART SEMANTICS 

The physical construction of a joint constrains the articulation of its parts A ball and 
socket joint has different articulations than a hinge joint. The joint descriptions do not uniquely 
determine ine physical constructions, but are suggestive We offer some speculations about what 
object characteristics might be suggested by some joint descriptors. 

Normally, we see CiO«ssections from one point of view, and know iheir width in one 
direction; little is known about the width in the orthogonal direction. We may assume the two 
widths to be the same, but sometimes we can make a better hypothesis. Consider joints where 
cross-section is conserved between one large piece and several, say n, small similar pieces, and the 
attachment point of small pieces to 'he joint lie approximately in a straight line For example, 
consider the joint of fingers and palm of a glove. It is reasonable to guess in such cases that the 
rross-section of the large pr;e is elongated in the perceived direction by a factor of n to 1. (see 
Fig 5.3(e)), 

Some estimates about the mvanance of joint descriptors can be made. Generally, those 
descriptors depending on angular relationships will change. Size related descriptors are more 
constant eg. neck joints and cross-section conservation. Our attempts at estimating limb 
articulation characteristics from the joint descriptors derived from the observed surface have not 
been successful. 
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CHAPTER 6 

RECOGNITION 

Recognition of objects has been one of our major goals. It also provides a measure of 
the effectiveness of our description mechanisms. We regard the problem of recognition as a 
problem of comparing descriptions of two objects; recognition is taken to be the process of 
discovering whether the observed description is a description of some pieviously seen or known 
object We believe that the most effective procedure is to verify that the observed description is 
compatible with the model. Guessing of a suitable sub rlass of models is an important and 
difficult part of the recognition process 

The matching procedures must take into account the following difficulties. We allow 
for arbitrary scale changes of an object and articulation of its limbs Descriptions generated for 
an object are not entirely invariant to viewing angles and articulation The amount of wlf- 
occlusion varies There are missing pieces tvi less frequently, extraneous pieces. Only the "front" 
of an object is seen and the cross-sections for the parts are only partially known. Non-circular, 
partial cross-sections are subject to change with different viewing angles. It is necessary to be able 
to make partial matche« when some pans of the object are invisible. It is felt, and hoped, that in 
spite of these variations, enough is "seen" to distinguish the scene, for most viewing angles. 

For recognition, the programs need to have access to a store of model descriptions 
Memory models may be constructed by storing previous machine generated descriptions, or put in 
by hand Manual construction of the model:, may be either by making measurements of the 
physical object, or by supplying the description of an idealized object; however, the manual input 
of models is tedious. Machine generated models may use one or more views of an object. Models 
obtained from one view will usually be incomplete, as only parts of an object are visible; other 
views must be used to obtain more information. We usually construct the models by storing a 
description of ih« object from a single view; these descriptions are modified interactively to correct 

for errors 

Some objects ein be well described in more than one way. For example. Fig. 6.1 shows a 
segmentation for the same glove as in Fig 4.9 (part of the palm of the glove was not visible in the 
latter figure). The two descriptions have a different structure, in one description all five fingers 
are attached to one end of the palm, while in the other the thumb is attached to the other end. 
Here, we store both descriptions During recognition, we match with each description 
independently and choose the one which provides a better match In our implementation, a jser 
makes the decision about the use of multiple, independent descriptions (the different descriptions 
still being generated by the machine). Automating this process is a natural "learning' problem. In 
sec. 68. we discuss how more complete models may be acquired by the machine 

Some Df the object descriptors used in our system can be usefully viewed as defining a 
graph structure, with the joints as nodes and piecei as arcs, or vice versa Descriptions of pieces 
and joints can be associated with the nodes and arcs as labels, or properties Relations between 
two parts can be expressed as relation arcs; representation of relations between mere than two 
parts Is not so convenient. Our interpretation of this graph is more than just as a "syntactic" 
description. Many "semantic" properties are represented in it. by 'he choice of descriptors used for 
the constituent pieces, the joints and their relationships, and the use of the distinguished pieces 
(see ch. 5).  We treat the connectivity information about an object as describing a graph structure. 

  — .^__ 
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Fig   6.1    Another View of the Glove cf Fig. 4.9 
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however not all object descriptors are embedded in this graph form (e.g. the bilateral symmetry 
descriptors). 

The recognition problem could be considered as a graph matching problem that finds 
the best partial match. Most of the general graph matching algorithms are concerned with the 
problem of determining complete graph isomorphisms, they provide a yes/no answer and no 
measure of partial match is used. They are clearly of little use for our purposes, with the expected 
variations in graph structures. Some partial graph matching algorithms have been proposed. A 
good survey of these techniques is provided in [Barrow]. Ambler et al. ([Ambler]) describe a new 
"maximal clique" matching technique, which finds the maximal self-consistent set of 
correspondences between the two graphs. We feel that the general partial graph matching 
procedures can be made to work for many cases, and that the graph interpretation for the 
descriptions is a useful one, but that treating the problem as a pure graph matching problem is a 
wrong emphasis, and does not lend to easy use of heuristics and scene semantics. It is hard to 
include knowledge about the best uses of descriptions in a graph representation alone; the graph 
matching procedures treat the matching of all nodes "uniformly", and use of context is difficult, 
eg we mav want to match two parts (nodes) in pairs only, or insist on certain nodes being in a 
particular order We will describe matching procedures, that do match the two connection graphs 
However, the matching is guided by knowledge about the nature of the descuptions used. 

We have attempted to make the object descriptions correspond to our intuitive 
descriptions; this allows us to use intuition and introspection for developing heuristics for use in 
matching. Humans, normally generate much more complex descriptions and use much more 
knowledge in their perception, however, when presented with a "stick figure" that corresponds to 
our machi.ie descriptions, (e.g. see fig. 6.2), they have little trouble in identifying the objects. We 
can examine, introspectively, some of the processes used. Our programs rely heavily on the 
structure of the object and relative sizes of its parts, so do humans; the articulation angles are 
important for people but limited stored models prevent the programs from using them. Humans 
undoubtedly also use some complex mechanisms, such as an evaluation of tl ' stability of the 
oojects; however, such mechanisms are hard to isolate and implementation is difficult because of 
their complexity and lack of relevant knowledge. It is easy to provide specific knowledge about 
specific objects; the difficulty is in incorporating knowledge that is likely to be useful for at least a 
significant "micro woild" Models foi classes of objects, such as the class of four legged animals 
would be useful. 

Our paradigm for recognition is as follows (Cf. the recognition block in Fig. I.I). We 
use important features of the symbolic descriptions to index into memory models to find a sub- 
class of similar models and compare the description of the (bject with the descriptions of these 
models (section 6.7). Each comparison generates a difference description. We pick the preferred 
difference descriptions, based on the similarities of structure and the similarities of the individual 
parts and their relations This is the process of dimt matching (section 62) Verification would 
consist of checking whether the differences between the model and the object descriptions can be 
"explained" in a satisfactory way, using redescnption of parts if necessary (Verification methods 
are discussed in section 6.6 and redescnption methods in chapter 5; neither have been 
impienented.) If a satisfactory match is not found, new members from the visual memory can be 
obf?ined by indexing with a modified description code. We have defined different levels of the 
matching process: indexing, direct matching, verification and redescnption 

The object description is matched with the descriptions of each model suggested by the 
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Fig   6.2   Stick Figures of Two Objects 

indexing m<schanism. The result of a match is a description of the differences (and not just a 
numerical value) We believe that for complex descriptions a simple weighted numerical 
evaluation is not sufficient; passing on symbolic differences allows other procedures to use more 
context in making a decision. Of course, at the final decision stage, some overall assessment must 
be made, but at any intermediate stage, symbolic structured differences are much more useful. It 
helps find similarities as well as differences, such as a new object is similar to the ones we have 
seen before, but differs in some small respect. We think this would be essential to a "learning" 
scheme Availability of explicit differences is also important, if verification and redescnption is to 
be attempted. 

Matching of the object description with a selected model description involves the 
matching of the two description structures and the details of the parts of the two structures. 
Knowledge of scene semantics guides the matching process. The ma'cHng begins by matching 
similar distinguished pieces. Order of pieces at two joints are preserved during matching. A 
match description contains pairs of joint matches, pairs of piece matches and lists of unmatched 
parts With each matched pair is associated a description of the quality of that match; joint 
matches note the number of missing or extra pieces and piece matches note an evaluation of the 
match of various piece descriptors. All matched joints are required to have consistent connectivity 
relations 
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Partial strucMre is sufficient, in many cases, for identification For heavily occluded 
scenes, generated eithc. by multiple objects or by the self-occlusion of a single object viewed from 
a particular angle, the structure of the object is not directly available; various alternate structure 
hypotheses mi;st be generated and investigated. Our programs do not handle such extreme 
situations; ihtse problems an- further discussed in sec. 6.4. 

Parts of the objects are compared on the basis of their metric properties; these 
descriptors are subject to some variations with the viewing angle. The length of the limbs is 
independent of the viewing angle; not all of this length is always seen, however. Shadow 
information tells us whether this is so, and such limbs can be treated differently. The visible part 
of the cross-sections changes, but for most cross-sections the variations are small; moreover, if the 
cross-sections in the model are completely determined, partial cross-sections can be matched. In a 
limited context of matching one part to a restricted number of other parts, these descriptors are 
usually distinct enough to provide adequate discrimination. 

To pick a best match, we have to choose between two difference descriptions. Our 
decision routines attempt to choose on the basis of gross differences in the structure first and use 
details J.' ;ne matches later, as necessary Due to the expected variability in the descriptions of the 
same object, we make a choice only if the two difference descriptions are clearly different, 
otherwise multiple choices ire reported. If alternative descriptions exist for an object (or the 
model), then the descriptions having the best match are selected. (Note, in the current 
implementation 'he alternative descriptions for an object are limited to merging of two separated 
pieces. The models may have more than one independent description.) 

Further decisions require a "verification" of whether the two descriptions could 
reasonably represen the same object, by trying to find explanations for the differen:es. For 
example, verification may explain the occlusion of a missing piece or check the functional 
requirements of the modi'., Redescnption of parts is necessary to explain some of the differences. 
We have not used any verification techniques; ^ome are suggested in Sec. 6.6. 

In  the following, we fust present an example first, and then discuss the details of 
matching and indexing.  Appendix 2 has a concise summary of the algorithms used. 

6,1 AN EXAMPLE 

An example of matching a description is presented here. Some of the operations 
mentioned here are described in more details in the following sections. Fig 6.3. shows the 
boundary for a doll and its piece segmentation, and Fig. 6.4. its connection graph. Note that one 
arm and one leg of the doll are not connected to the rest of the object, but the arm is hypothesized 
to connect to the arm joint and the leg to the leg joint. The body and the head are labelled as 
two diitinguisfied pieces, being the two large pieces in the description. 

The indexing process suggests matching this description with the stored descriptions of 
a doll and a horse (among the objects known to the program). Here, we will discuss matching 
with a doll in detail. 

The connection graph for the doll model is shown in Fig. 5.1. The head and the body 

1 
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Fig. 6.3   A View of a Doll 

are again fhe distinguished pieces. The body as a distinguished piece is two-ended (connected at 
both ends) in both descriptions ^d the head one-ended (connected at one end only). The 
matching starts by matching similar distinguished pieces ?nd a two-ended object piece can not 
match a one-ended model piece. Thus the initial choices are: 

1. object body with model body. 
2. object head with model head 
3 object head with model body. 

Consider the first alternative, i.e. matching the object body with the model body.   The 
match of these two pieces is acceptable   Two choices are possible for matching the joints: 

a),  the object arm joint with the mode1 arm joint; 
and the object leg joint with the model leg joint, 

or 
b).  the object arm joint with the model leg joint; 

and the object leg joint with the model arm joint. 

The matching programs explore both alternatives.  Consider option (a), and the details 
of matching the two arm joints 

The object doll arm joint has only two pieces besides the body attached to this joint 
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0 

Fig. 6.4   Connection Graph of the Doll in Fig. 6.3 

(head and one arm), whereas the model description has three These two lists are matched with 
each other in direct and reversed orders. For each order, the head matched with head and the 
arm with an arm gives the minimum total piece match error. (Piece match error is a numerical 
evaluation of the differences in the relative sizes of the pieces and is described in sec. 6.3) The 
left arm of the object matching with the left arm of the model gives a margmally better match, we 
have no real strong discrimination between the two orders here. Note that the information aboMt 
the anRle between the limbs is not used, since the model does not have any information about 
articulation limits. Having settled on these matches, the programs note that the model has one 
extra arm and the object has an isolated arm. that could be connected to the joint being matched. 
This match is tried and found to be satisfactory and is retained. 

Matching of the two leg joints proceeds similarly. In this case the isolated object leg is 
shadowed and its perceived width is smaller than the corresponding leg in the model description. 
However, it is known that the object leg is shadowed along its width and is allowed to match with 

the larger model piece. 

Now examine the matching of the joints as in alternative (b; above, i.?. matching the 
obiect lee lomt with the model arm joint and vice-versa. The matches obtained are: the object leg 
with a model arm at one end; and the object arm with a model leg, and the object head with 

another model leg at the other end. 

A choice is made between alternatives (a) and (b) now. The average piece error is 
clearly better for choice (a), (the ratio is > 2:1). The main discrimination was made by the 
mismatch of head and leg for the alternative (b). 

Other possible distinguished piece matches a-e tried. Matching the object head and the 
model head ends up in a match that is identical to the above match. The other alternative of 
matching the object head with the model body is cmed out. but turns out to be clearly inferior. 

-   
  -       -  "  ■     -  





In 

D 
D 

0 

t 

mmtu     1 

6.2 MATCHING 62 

matches  in preferred order 

DOLL 

PRINTING PIECE CORRESPONDENCES 

P3 ARM 
P4 HEAD 
P6 ARfl 
PI BODY 
P2 LEG 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE OBJECT 

none 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE MODEL 

LEG 

HORSE 

PRINTING PIECE CORRESPONDENCES 

PI BODY 
P5 COMB_REAR_LEG 
P2 TAIL 
P3 FRONT LEG 
P4 NECK 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE OBJECT 

rone 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE MODEL 

HEAD 
REAR_LEG 
FRONT.LEG 

Fig. 6.5   Matching Results for the Doll of fig. 6.3 
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are not used for a similarity test We require an approximate match of the elongation and com1 

angle descriptors. A piece may be connected either on one side only, or on both sides. Such pieces 
are called one-ended and two-ended respectively. A two-ended piece in the object description is 
not matched to a one-ended piece in the model but the reverse is allowed, we expect the object 
description to have no more pieces than the model The distinguishing characteristic of the two 
pieces must match, if one piece is elongated so must the other. 

Consider the matching of two distinguished pieces ODP (object) and MDP (model). Let 
the joints at the ends of ODP be OJI and OJ2; and at the ends of MDP be MJ! and MJ2. 
These joints can be matched in two ways 1) OJI with MJ1 and OJ2 with MJ2; or 2) OJI with 
MJ2 and OJ2 with MJl. If one end of each mam piece Is unsymmetncal then the corresponding 
ends are matched. Otherwise, the choice of ends to match is based on the quality of joint matches 
in the two alternatives. 

Now consider the matching of joints in the two descriptions, with the specified 
correspondence of one piece from each joint. With each joint is associated an ordered list of 
pieces connected to it. The order of the pieces was determined by the position along the boundary 
of the object. This order is not necessarily invariant with the viewing angle, however, we assume 
it to be so. (Note that since we are using distinguished pieces, the number of alternatives 
considered is suitably small that all matche, without preserving order couid be evaluated.) The 
pieces at the joints are matched in the same order and reversed order Ore order is picked f -m 
the results. We are not able to differentiate between views of an object from the "front" or the 
"back", thus a human left hand is not distinguished from a right hand. Such distinctions 
normally need finer details of the surface or the cross-sections than are available to us from our 
hardware/software system, eg information about nose and eyes is useful in disting'i^hing the 
front of a human. Some impro-'ement in resolution could be achieved by selective verification 
(sec. 6.6). 

Matching of two pieces generates a description of then differences. The sizes of the 
pieces are normalized b) the given scales (used throughout one complete match). We note the 
differences in the various piece descriptors. The descriptors used are: length, width, length to 
width ratio (redundant), cone ant;le and the number of connected pieces. We also generate a 
numerical evaluation based on a non-linear weighting of these differences, and call this the "error" 
of the match   (Details of the evaluation function are discussed in sec. 6.3.) 

If one of the pieces is a comp'ex piece, i.e. made up of a combination of pieces, then we 
match the whole piece as well as its components to the other piece and pick the par that matches 
best For example, our model of a horse contains two alternative descriptions of the rear legs; as a 
single piece or segmented in top and bottom pieces. If in some view of the horse, the whole leg is 
seen, it gets matched to the single leg piece in 'he model, but if only the top of the leg is seen it 
gets matched to the piece in the model describing that part of the teg 

In joint matches, the number of pieces at the two pints is not necessarily the '.ame. We 
want to pick piece matches so that each piece in the smaller list is matched to one piece in the 
larger list (no duplicate matches) and the total match is optimal. Matching error for a list match is 
the sum of the errors of its component piece matches and is the criterion used for choosing 
between list matches. We match lists in the direct and the reversed directions and choose on the 
basis of resulting total errors. In this case a simple numerical evaluation suffices, since all other 
differences are the same   Details of the piece list matching procedure are discussed in section 6 3. 
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The description of differences for a joint match consists of the following: the total 
matching error of the associated pieces, maximum of the piece match errors lists of unmatched 
(extra) pieces and missing pieces. These descriptors summarize a joint match, the piece match 
descriptors are also carried along with the joint match allowing the decision routines to have 
access to them. Note that we have not used the differences in angles between the pieces of the 
joints. We have no mfoimation about the allowed articulations of the limbs of a model and so 
assume all possible articulations Foi recognition of unarticulated objects, these angles would 
obviously provide powerful discrimination The descriptions of joint types have also not been 
used as some of them depend o.i limb articulations and also because of the inadequacies of low 
level descriptions (sec. ^2) The nature of the matching mechinism allows easy addition of such 
information to the programs in the future 

After the various distinguished pieces and their end joints have been matched we 
attempt to choose between the matches (decision routines in section 6.5). If some matches are 
clearly preferable to others we retain only those. All acceptable matches are then "extended" to 
include the rest of the pieces and joints of both the object and the model. For each pair of piece,-, 
that hav<» been matched, we match the joints at the unmatched ends and continue until all joints 
and pieces have been matched (some joints and pieces have to be matched with null joints and 
null pieces). This procedure assures the matching of the joints in the two descriptions to have 
consistent connectivity relations, if the graphs matched have no loops, as is the case for all the 
objects considered here More generally, we expect the object piece connection graphs to have very 
few loops, our method can easily be extended by first detecting the loops and disconnecting them, 
then performing the extensions of the .atch as described and then techeckmg the connectivity 
relations demanded by the loops. Aftei the matches have been extended, we attempt to choose 
among the various matches again and the best of them is the representative match with this 

particular model. 

Partial matching proceeds in a very natural way in the processes described here We 
match those parts that are visible and make a note of the parts In the model that are not seen in 
the current scene Decisions about the importance and the plausibility of the missing parts is left 
to the decision routines (sec. 6.5), Of course, the discrimination of the matching procedures 

decreases as the number of parts seen decreases. 

We have used the order of pieces relative to a distinguished pier" and assumed that 
these distinguished pieces are visiMe In scenes where these distinguished pieces are hidden, we 
have circular lists of ordered p cces and a larger number of possible matches will need to be 
investigated With the resolution of our setup, we do not normniiy see the details at the ends of 
pieces, which could be advantageously usec. for discriminating between pieces (eg. the hand at the 
end of a human arm) Some improvement could be obtained by better procedures to examine 
piece terminations, in the process of the piece descriptions. In this section, we have been 
considering matching against a given model, however, the difficult problem with partial 
information is to select suitable moaels to match against. The problem of matching occluded 
scenes is further discussed in sec. 64 

6 3 MATCHING OF OBJECT PIECES 

In this section, wc discuss the details of the matching of pieces, the basis for choosing, 
among piece matches, and the optimal matching of two lists of pieces 
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Matching of two pieces involves comparing their piece descriptors. We assuciate a 
description of 'he differences with the piece match (a LEAP item, d|ffences stored as datum of 
the item) and also generate a weighted numerical error based on tht differences The nummcal 
error is useful for choosing in limited contexts. 

The most important characteristic compared is the connectivity of the plece^ to be 
matched. Piece matches are called as sub processes of a jo.nt match process, and the joints at one 
end of the pieces to be matched are given. We compute the difference in the number of pieces 
attached at the other ends of these pieces; this difference is called connectivity difference The 
connectivity difference is positive if the object piece has more pie^s connerted to it thin 'he 
model piece, such a match will necessarily leave some pieces of the object unmatched and is thus a 
poor match even without further context If the model piece has more pieces connoted to it thin 
the object piece, then the connectivity difference is set to zero, the model is allow.-d to have extra 
pieces. Only "well-defined" pieces are used for computing the connectivity differences, a piece is 
well-defined if it is elongated (length to width ratio larger then 3.0) or if it is a distinguished 

piece 

The scale of the two pieces to be matched is normalized by given factors (the sizes of 
the pieces first matched in the overall match). Difference in width, ratio of length to width and 
cone angle are computed and their weighted sum is used for a numerical evaluation of the en or 
of the match This error function is used only to find gross metric diffeiences between two 
descriptions and the choice of the specific function is not of much importance (some reasons for 
the choice a e explained later). 

The error function is computed as follows (modifications for matching shadowed pieces 

are covered later) 

VALUE OF MATCH - fw(dw) ♦ fr(dr) ♦ fc(dc) 

Where; 

dw - Width difference 

- ABSOLUTE (Width, - Widtl^) 

dr = Length to Width Rat.o difference 

- (Length.Width Ratioi)/ (Length.WidthuRatu^) 

If dr < 1 then dr - l/dr 

dc - Cone angle difference 

- ABSOLU'T"E (Cone angle| - Cone^angUv?) 

(All angles in radians) 

fwWw) " d w 

fr(dr)- if dr< 10 then 0.0 else 

if dr> 5.0 then 1 0 else 0.Mdr-I) 
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fc(dc)- If dc< 0.1 then 0.0 else 

if clc> 0.3 then 1 else dc . 

In the above evaluations, lower and upper thresholds have been set for cone angle 
differences and length to width ratio differences. If the lower threshold is not exceeded, the 
differences are not considered significant and do not contribute to the error value. If the upper 
threshold is exceeded, it indicates a very poor match and the error contribution r set to a value 
(1.0 in both cases) much larger than expected in a good match Reasons for the choice of relative 
weights in this function are discussed later. 

If an object piece is shadowed, the piece descriptors for the complete piece are unknown, 
and the quality of its match with a model piece is difficult to establish. We assume that an 
arbitrary amount of the piece may be obscured. In the above error computations, if the width of 
the shadowed piece is smaller than that of the model piece being matched with, the width error 
component (fw(dw)) is taken to be zero   Average width has been used here; if part of the piece is 

unshadowed then the use of the width of the unshadowed part would give improved results. The 
cone angle and the length to width ratio for a shadowed piece are not know.i reliably and art not 
used for determining the match error. However, the connectivity difference is computed fr rhe 
same way. The information about the shadowed piece having excess pieces connected to it u still 
equally significant. 

The selection of the error function has been ad hoc, it is based on our expectations of 
reliability and invanance of various descriptors. We expect the width of a piece to be known 
reliably (but dependent on the viewing angle), while the length, and hence the length to width 
ratio, and the cone angle tend to be sensitive to description methods. An improvement would be 
to assign the weights for each piece match separately, depending on some context e.g. for matching 
with a very long piece the elongation is important and should be given more weight. A more 
compete model of the objects might specify what the essential qualities required for a piece are 
and influence the weighting. Standard, statistical parameter setting techniques ([Duda]) may be 
useful in determining these weights, if no context is used. 

The shapes of the piece axes (straight, circular etc.) have not been used for matching, 
primarily because the pieces encounterei in the objects we consider have been mostly straight. 
The cross-section shapes have not been matched, since these are no; known very well in the 
present implementation We have also not compared the cross-section functions in a very detailed 
way; we merely fit a straight line to one, to determine an average cone angle. A more subtle 
evaluation could compare the individual cross-sections along the axes of the two pieces and build 
differences; this is expected to catch local differences of shape better than our averaging process 
The major difficulty would be caused because of the quality of the boundary data, which adds a 
significant error to the crosi-section widths, masking any fine systematic > .ffeiences. 

To select between two piece matches, we first compare the connectivity differences. If 
one match has a higher connectivity difference (which corresponds to excess object pieces) than 
the other, then that match is rejected. If ccnnectivity difference is the same, we pick the piece with 
the lower numerical evaluation. This p'.ece selection method is very local and is used in limited 
contexts only (in selecting piece matches when list of pieces at fwo joints have to be matched). 
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MATCHING OF PIECE LISTS: 

Consider the matching of two lists of pieces, in a given order, the lists may have 
different number of pieces.  Let the two lists be P- {p|, P2 pm} and Qj- {qp q2 qn}, and let 

m < iv We want to pick piece matches so that each piece in the shorter list, P, is matched to one 
piece in the longer list, CV One pitce can match with only one other piece. The relative order of 
pieces must be maintained, i.e.  if pj matches q., and plt|  matches q^ then j <  k.   This 

requirement constrains the matching of a piece, p, in P, to be matched to q. in Q, such that I ■ (n- 

m) 1 J S i * (n-m).   Each p, must be matched to a different q,   A complete tree search with these 

constraints could ue made to find the best assignments, as the number of pieces involved is small 
(say s 5). However, we use the following proceduie which is faster: Evaluate the match of each 
piece p, in P to each potential matching piece q. in Q.(with the noted constraints between i and j) 

and arrange the matches in a list ordered by the preference of these piece matches (piece match 
selection was discussed earlier). For each piece compute a match sensitivity ratio (to be defined 
shortly), indicating how fast the match quality for this piece deteriorates as its matching piece is 
changed. Assign the piece with the highest sensitivity ratio its best match. Remove the matched 
pieces from further consideration, by removing matches involving these pieces from the piece 
match lists, and update the sensitivity ratios   Repeat this until all pieces in P have been matched. 

Let us now specify the match sensitivity ratio. Some pieces are left with only a single 
match, either initially or after some piece assignments have been fixed; in such cases, we set the 
sensitivity ratio to an arbitrary high value, MAXRAT, assuring that this piece will be assigned a 
match first. Normally, the sensitivity ra 10 is the ratio of the second best match error to the best 
match error However, if the object piece is shadowed, the sensitivity ratio is set to its lowest 
value. The match quality of a shadowed piece «s not known reliably, and its match select'jn is 
deferred to be last. If the connectivity difference of the two alternatives is different, the sensitivity 
ratio is set to 0.1 * MAXRAT, so that this piece will be assigned its best match immediately after 
the single match pieces have been matched (this applies for a shadowed piece match as well). If 
the piece is a "well defined" piece, the ratio is doubled (so that the well defr ed pieces are matched 
earlier). 

A piece list match is characterized by the sum of individual piece match errors. To 
choose between two orders of matching two lists (direct and reversed), we compare the total errors 
for the two orders; if one order is clearly better (error ratio > 2) then pick the lower error match, 
otherwise make a decision based on the lower maximum piece error A numerical piece error 
suffices for selection here, unce the rest of context is the same for the two orders. 

Many objects we consider are bilaterally symmetric: their limbs form symmetric pairs. 
For such objects, the matching of piece lists could hi improved b) matching the pairs 
simultaneously; the a! ove described procedure finds matches for each limb separately 

6.4 OCCLUSION AND SHADOWS 

Parts of an object may be occluded by other parts of the same object, or by the parts of 
another object in a multi-object scene. In such cases, ^he description procedures provide some 
isolated sub-structures, each such sub-structure consisting of a number of connected pieces, and 
some isolated single pieces.  We regard each sub-structure as a separate object The isolated pieces 
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may be parts of one of these objects or be single piece objects. Description routines also genet ate 
hypotheses for connections of these isolated pieces to the joints of objects, based primarily on 
proximity and symmetry (Sec. 5.4). At the stage of matching, we are able to further examine rhe 
validity of these hypotheses, by examining whether such piece: are present in the mooel but not 
in the object description. We discuss the handling of these isolated parts assuming that connected 
parts of the object provide enough data to make partial matches. 

The matching begins by comparing a connected sub-structure, regarded as an object, 
with memory models, ignoring the isolated pieces that possibly attach to this object. At each joint 
match between the object and the model, we examm? whether the model joint has some pieces 
that have not been matched. If so, the pieces hypothesized to connect to the current object joint, 
if any, are matched with these extra model pieces. Since the connectivity hypotheses are weak, 
such matches are accepted only if the pieces match well (Matching of a shadowed piece with a 
model piece was discussed in sec. 6.3.) The matching error is required to be less than the 
maximum matching error of the other pieces at this joint. A more satisfactory resolution would 
be to use more sophisticated matching techniques, such as to determine whether the visible part of 
the shadowed limb matches with some part of the model limb. If a suitable match is found, then 
this isolated piece is regarded as being attached to the proposed joint (in the context of 
hypothesizing this object to be the model object), and is heieafter included in the evaluations for 
quality of the overall match. This process is repeated for each proposed object in the scene (A 
converse procedure, that assumes the hypothesized connections first, and verifies them by 
matching with memory models, has the advantages of starting the matching with a larger, more 
selective structure, and will be particularly useful for heavily occluded scenes where little sub- 
structuie is immediately available. A combination of both methods is likely to be used for 
difficult scenes.) 

Isolated pieces that remain unmatched by the described protedure are matched with 
single piece objects. Further treatment of the pieces that remain unmatched is difficult. The 
current programs simply i^noie them and identify the remaining obj-cts Several alternatives are 
possible: after an object has been identified and some pieces are missing, we may accept even poor 
matches for these pieces now. Redescnption of these pieces and a closer examination of shadows 
will perhaps be necessary for a better treatment; we have not investigated this. Some parts are 
split in two because of occlusion from another part, eg one leg of the doll n Fig. 4.14 is seen as 
two separate parts because of the occlusion caused by the snake Continuity of such parts could 
now be examined with the knowledge of the corresponding model piece (such as the length of the 
model piece is close to the length of the combined piece) This technique has not been 
implemented. 

The foregoing presumes that enough parts of an object are seen as connected to 
est. blish a good match with the models; this may not be so for heavily occluded scenes Some 
conjectures about such conditions are offered he.e In such mstintes the matching process and 
the description process must work more closely together, the matching process supplying more 
information for description hypotheses. Some hypotheses for conncrtmns and continuations of 
parts can be generated at the description level, "bottom up", by examining continuity. We can use 
the continuity of surface, axes of parts and the cross-sectionv Three-dimensional position 
information will greatly aid in the determination of these continuities Alternatively, given a 
model description to match against, wt can attempt to find parts of 'he pieces that fit well with 
the model '"top down approach"). A combination of the two methods will probably be used. 
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matcht., have not been completed. We completely ignore any missing pieces, presuming them to 
be hidden A more sophisticated process should investigate whether this is possible. (Simply 
preferring the match with fewer missing pieces will always result in picking the simpler of the two 
models that share a common structure, e.g. the structure of a horse is similar to that of a doll with 
an extra limb for ta:l, and this preference scheme will tend to pick a doll, for those views of the 
horse in which the tail is not visible. It is difficult to combine the number of missing pieces with 
the other measures of match quality.) 

If no structural differences ari found, we compare the evaluations of the piece matches 
of the two object matches. For each object match the average and the maximum piece match error 
is computed. Average error is an indication of the overall fit of the various pieces and the 
maximunr error Is useful when two objects are similar but differ markeoiv in a single piece. If 
either of these quantities differes significantly (by a ratio of 2 to 1) between the two matches, we 
select the match with the lower p^or Average error is considered before the maximum error. 

If no clear Quferences are obtained, re pick the match with the lowest average error or 
the lowest maximum error, depending on which provides the greater discrimination (larger ratio), 
but mark the selection as low confidence 

The decision procedurr described here relies on general consideration? and gross 
differences. We do not make any decisions based on model specific information. Part of the reason 
is In our use of loose models. The models are just previous descriptions with minor r.odifications. 
More specific information could be added to the models either by hand or by a description 
learning scheme ([Winston]), If the models specified the necessity of certain relations to hold, we 
could check for them here. These relations can be of the form of certain ratios of sizes of the 
limbs, necessary similarity (or dissimilarity) of the limbs etc. No angle information has been used 
in making decisions, since the articulation limits are unknown, if added resolution were available, 
we could examine the confusing parts in more detail, e.g. examine the structure at the ends of the 
parts. 

, 

6.6 VERIFICATION 

Procedures to choose between two matches were described in the last section. 
Additionally, it is desirable to test further the adequacy of a match. Our decision procedures insist 
on a minimal quality of the match (such as no extra well defined pieces) but no attempt is made 
to explain the remaining differences Since there is likely to be more Information in a model than 
in the object description, a more general system should try to "verify" model information in the 
object description This seems to be the case m human perception ([Posner]) Rede^r.ption of 
some parts may explain some of the differences; the description of model pieces is known and the 
description procedures can test whether a similar description can be obtained for the object pieces. 

We have not implemented verification and redescnption procedures. In the following 
we suggest some verification techniques. 

1. Examine the missing and extra pieces: Can the invisible piece be hidden for some 
permissible articulation of this piece and the known articulations of the visible pieces ? Can 
the extraneous pieces be included in the other pieces by redescnption ? 

B^-^——- 
- ■ 



I 
6.6 VERIFICATION 71 

2. Can the metric differences of two matched pieces be explained? The perceived width of a 
piece changes with the viewing angle; examine whether the width is consistent with the 
present viewing angle. {For such verification, the model needs to have information about the 
complete cross-sections.) Sometimes, a piece is terminated prematurely because of a local 
discontinuity in the boundary and its length measurement is faulty, now we can redescnbe 
this piece with different continuity conditions to determine whether it can be matched better 
with the model piece. 

3. Model specific data: check any specific relations that must hold for this particular object 
(among the visible parts). These relations may be based on the functional requirements of 
the object. 

4. Suppoit and stability relations: check whether the object could be stable with the proposed 
piece assignments This is difficult with only partial information about the object. 

5. increase Resolution: Our r,/»:em is limited in resolution; however, if higher resolution were 
available, we might not want to process the whole scene at this higher resolution. After 
matching, we have specific high resolution features that we need to verify. This may involve 
gathering new, high resolution data from the scene, or just to make use of such data in parts 
of the description phase (Increased resolution will require the use of a narrower light beam 
and finer image sampling; increasing the effective stereo angle is not practical because of 
additional shadow problems.) 

6.7 INDEXING INTO VISUAL MEMORY 

Ü 

In this chapter, we have discussed the matching of an object description with a given 
model description, and also the choice between two such matches. If the number of model? known 
is small, tor recognition we can simply match the current object description with each known 
model and choose the best match. However, as the number of models increases, the computation 
required increases proportionately, and indexing to locate a sub-class of similar models becomes 
necessary. In our system, we have experimented with a small number of models only, but the 
number of models can be increased indefinitely, in principle In the following, we describe some 
preliminary efforts at indexing and also discuss how more powerful indexing methods may be 
implemented. 

For indexing, some important "features" are ibstractcd from a complete object 
description. The e features may be viewed as forming a "feature vector" or a "description code". 
Note that two models may have the same feature vector and differ in the detailed descriptions. 
These features are used only to locate promising similar descriptions, and not to establish a 
detailed match Models with exactly the same description code can be located efficiently by 
standard hash coding techniques. We have chosen those features of an object description that are 
insensitive to changes in the viewing angles and limb articulations However, some variations do 
occur because of occlusion and description accuracy. We do not expect to find a memory model 
with the same description code, but instead look for those models whose description code is close 
to the observed code. 

The problem of finding a similar code is similar to .ne problem of finding a best match 
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(with Hamming distance) discussed by Minsky & Papert ([Minsky], pp. 222 - 225). They 
conjecture that the solution of this problem requires the equivalent of a complete search of the 
memory. Rivest ([Rivest]) presents a statistical analysis claiming that for reasonable distribution of 
the codes in the description space, a simple search around the observed code has a high 
probability of finding a match in a rather small number of steps However, these methods have 
treated the problem of searching for best match as a general combinatorial search problem. For 
our problem of indexing, the generated descriptions have some semantic content to them, which 
can be used advantageously for searching. We can use the knowledge of the descripvions to 
decide which descriptors are likely to be insensitive to change and also which ones may be in 
error for this particular description. 

Our paradigm for indexing is as follows. One or more description codes are generated 
for an object description (also an object may have multiple descriptions). The model* with the 
same description code are retrieved from .1 e memory. Based on the knowledge of descriptors and 
possible errors, the description code is changed and new models with the modified code are 
retrieved. The number of changes made to the description code may depend en the confidence of 
the various components and the process could be stopped if a suitable match was found. However, 
becau-e of the difficulties of judging the adequacy of a match, we have not chosen to stop the 
indexing process until all reasonable alternatives have been tried. 

The choice of features used for indexing has been based on their invariance. For the 
class of scenes considered in this thesis, we have been assuming that one or more of the 
distinguished pieces of an object is present in any scene. This has lead to a choice of descriptors 
of the distinguished pieces for indexing. Each d stinguished piece generates a separate code for 
indexing, and the presence of any distinguished piece in the scene is sufficient for proper 
indexing, i.e. indexing is possible from partial views. The choice of descriptors used is further 
constrained by the desire to use only those descriptors that can be represented by integer values, 
preferably binary. Use of real valued descriptors such as the relative widths of the pieces at the 
end is more difficult. A possible approach is to quantize the real values; however we have not 
used such descriptors. 

Following is a list of descriptors for a distinguished piece that are usable for indexing: 

1. Connectivity of the distinguished piece (connected at one end or both). 

2. Conical or cylindrical distinguished piece (conical being defiiied by the average cone angle 
exceeding a threshold). 

3. The type of the distinguished piece, eg, long or wide 

4. Shape of its cross-section; flat or curved, concave or convex. 

5. Shape of the axis; is it straight ? 

6. Regularity  of  this  piece (cross-section  function of a  regular  part   has  some simple 
geometrical shape) 

We have used only the first three of these descriptors, primarily because the programs 
for generating the other descriptors have not been implemented (see sec. 5.1 for choice of piece 
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descriptors) Also, the computations of regularity cannot be reliably made with the quality of data 
currently available to our programs We have used the descriptors of the distinguished pieces 
only. However some descriptors for the whole object may be usefully included in the description 
code, e.g. whether any of the pieces is regular. We have not used any joint descriptors for 
indexing here, because of then variability as discussed before (sec. 6.2). 

Further efficiency in retrieval of the models is gained by using the number of pieces 
attached at the either ends of a distinguished piece. Let N| be the number of attached pieces at 

one end and N2 at the other, and further let N2 < N|. The models with the same description 

code are stored in a list, which is retrieved during indexing. This list is ordered in a descending 
order with the number Nl corresponding to the particular distinguished piece. During retrieval, 
we search along this list for 'hose models that have more attached pieces than the observed 
description piece. The models must have at least as many pieces as the object for an acceptable 
match. When the first model with less pieces is encountered, the rest of the list need not be 
consideied. Further improvement would result in ordering the sub-list of models with the same 
value for N. by the value of No   On the average, these two ordermgs should reduce the number 

of models to be considered by a factor of two each. 

In the current implementation, we index into memory for a description code 
corresponding to each distinguished piece. If the object piece U one-ended, it can match with a 
model with a two ended distinguished piece and this alternative is also used to index. Other 
perturbations to the description code could be basel on the confidence of the descriptors, e.g. if in 
the description of the distinguished piece the observed cone angle is close '0 the threshold then we 
should try its description, both ss conical and non-conical, we have nc. useo this The number of 
entries required grows exponentially with the number of descriptors that neti to be perturbed, 
and must be chosen carefully Our experiments with indexing did not advance »nough to study 
this in deta.-l. In the following we present an analysis of expected indexing efficienoes, based on 
some si.Tpinying assumptions. 

The retrieval efficiency of the indexing scheme is dependent on the number of 
descriptors used. Let n be the total number of descriptors and assume all descriptors to be binary 
valued Also assume that on the average m of these descriptors have value I. If this number is 
assumed to be exactly m, the number of possible codes is the binomial coefficient Cn m. Consider 

the situation where the number of models in the memory is much larger than the number of 
possible model code:. In this case each model code is expected to have a long list of models 
attached to it and each probe into memory is expected to succeed 111 retrieving some models. Let / 
be the number of descriptors that are doubtful and need to be perturbed Then, the number of 

entries made is 2l (assuming independence of these descriptors). The reduction in the number of 
models considered in this case is the number of possible codes, divided by the number of entries 

made, 1 e. (Cn m)/(2'). A further improvement by a factor of 4 can be expected by ordering the list 

as described above. 

As example. If n were 6 (as enumerated in the list of descriptors above) and m was 3, 
C - 10, The best possible improvement factor is then 40, modified by the number of needed 

entries. For our implementation with n» 3, and m- 1 or 2, the expected improvement is still equal 
to 12. Considering the preliminary nature of these efforts, we feel that the results are 
encouraging. Note that our expectation of indexing efficiency is predicated on the belief that the 
objects will be evenly distributed over the chosen descriptors. 
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Consider the example ot me doll discussed in section 6.1 (Fig. 6.3). The set of models 
used consists of; a horse, a doll, a glove, a ring, a snake and a hammer. The distinguished pieces 
for the present view of the doll are the body and the head. Using descriptors of the body, the 
indexing programs pick out the doll and the horse as the similar mcdeij (fie other models do not 
have enough attached parts to their distinguished pieces). However, usin^ the head of the doll, 
the hammer mode! is also picked out as a likely model. Note that if the shadowed arms were 
connected to the body, this suggestion would not have been made. The hammer is quickly 
rejected as a possible match, by comparing the total number of pieces of the object. This number 
could also have been used as a descriptor for indexing by further ordering the model lists by this 
number. 

Current implementation of indexing sufferes from the inadequacies of our descriptive 
techniques, though we think that some improvements can be made by techniques already 
discussed (see chapter 7, for a summary). Use of real valued descriptors would also aid in 
improving thj effectiveness of indexing, eg. we could use the relative sizes of the pieces and the 
angles between them. Our indexing scheme is designed to work wiih occluded scenes and partial 
views, However, situations with heavy occlusion are not considered With a limited number of 
models, the analysis of occluded scenes is somewhat simpler, as various models can be "fit" to the 
observed data. With a large number of models, it becomes necessary to generate enough "bottom 
up" descriptions, so that a list of likely models can be efficiently indexed. 

6.8 MODEL ACQUISITION AND LEARNING 

For recogmuon, we need a collection of model descriptions. These models may be 
previous!; seen descriptions (visual memory) or be input by hand. The latter alternative is tedious 
and not used. We construct models by saving a previous description of an object, which is then 
interactively modified to correct for errors. A suitable viewing angle is Tiosen $o t'.iat a maximum 
of the object is seen. Additional information, as necessary, is added to the model so that all parts 
of the object are present, but not all detail', of the parts are known. The full cross-sections of the 
parts of a model can not be determined from a single view. We store only the perceived width 
from the particular viewing angle The observed angles between the pieces at a joint are known, 
but not their articulation characteristics. In some cases, we use independent descriptions g^erated 
by two different views, as in the example of a glove discussed earlier. Such models havt been 
satisfactory for our purpose; following are suggestion.' on how more complete models may be 
acquired automatically. 

Information about the unseen parts of an object can be obtained by usmr multiple 
views of the object. To combine the information from several views, we have to be aole to find 
common links in various views. If the object stays in the same physical position for the different 
views, or is moved by a precisely Known amount (e.g. by being rotated by a known angle ^n a 
turntable), then the linking problem is simpler, since we KHOW the three-dimensional positions of 
points on the visible object surface. We can assemble data from the separate view; before 
generating any symbolic descriptions, but must "register" the various views whose absolute 
calibration may be in error. Alternatively, we can describe each scene, and then match the 
descriptions of th" various views The different views can, for example, be used to complete the 
cross-se'uons for parts. We c?.n use the knowledge about the limbs being in fixed positions here. 
Alternately, if many views are used, the diffeiences from view to view can be made arbitrarily 
small and the correspondence p^jblem becomes trivia!. 
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Views with different amounts of limb articulations can be used to learn the articulation 
cha-dctenstics The matching procedures can be the ones we have presented, with the exc ption 
of not assuming that either of the descriptions to be compared is more complete than the other. 
Since the descriptions will not be "perfect", the matching procedures must decide about which 
parts of the descriptions are acceptable, based on the compatibility of the diffeient views. Parts 
found in several views are clearly more credible. The learning examples need not use views with 
he^.vy amounts of occlusion, making the task of description and matching easier. When two very 
different descriptions are generated for the same object (e.g. glove in Figs. 4 9 and 6 1), the 
programs will need to decide wheher both of them are acceptable or whether one is an erroneous 
description This decision may depend on whether one description can be transformed into the 
other, without chancing the shape of the object. (An alternative to storing both descriptions 
would be to have the matching programs attempt such a transformation.) Acquisition of such 
knowledge is "learning" in a non-trmal sense. We think that the present matching procedures can 
be easily extended to accomplish this. 

A different class of model characteristics, requiring certain relations to hold fur a 
particular model, can be learned by examination of different "examples", as suggested by 
[Winston] These relations may, for example, be required metnc relations of sone parts or 
r-quired symmetry of parts. Winston's procedures find similarities and differences between 
different examples and abstract necessary relations for a certain model. We ..re able to generate 
similar difference descriptions. However, Winston relies heavily on each description being perfect 
(no mining or extra lines in the descriptions) and extension to imprecise descriptions will require 
addition of preference criteria 

We have not investigated these learning problems, and suggest them as important 
problems for further research. 
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CHAPTER 7 

RESULTS AND CONCLUSIONS 

Some results »jr different techniques described were presented earlier. Here we present 
more results on other MM! to illustrate their performance range. We summame the strong and 
the weak points of our techniques and implementauon. and discuss some ideas for related, further 

research. 

7 1 RESULTS 

Fies 7 I thru 7 15. show results at various levels of processing These include the results 
of boundary routines, preliminary segmentations and ax,s, cross-section descriptions, selected piece 
seemer.tat.ons and the output of the recognition routiiit*. The segmented scenes show the axis of 
the cones The matching results show the models selected by the indexing and a preferred 
ordering of these models as a result of mttchlnf (one or moe models may be included;. For each 
such match the figures also ^ ow the correspondences made between the pieces of the object and 
the pieces of the model. In the following we discuss in detail the performance characteristics of 
the various processes, by examining the results. 

Use of three-dimensional data is very effective in separating occluded bodies, the 
separation is a natural outcome of the boundary organization process (see Figs 7.3 and 7 5; 
compare with the TV pictures in Figs. 7.1 and 7.2). However, touching objects are not necessarily 
separated, e.g. part of a doll leg and the snake in Fig. 4.14 are seen as a single object. 

The quality of the boundary output is affected by the following factors. The end points 
of the two series of laser scans do not always natch well causing the boundary to be jagged A 
particularly noticeable example is in Fig. 7.6. The thinning process is also poor in location of the 
end point/of short segments. More serious problems can ocur it the scan data itsel is poor. !f 
the hue of the object is complementary to that of the Illuminating light (or it has dark spots), the 
TV imaee of the scan has false discontinuities. Use of a white light or multi-color laser would 
solve this problem in many cases. Reflections from the object can give rise to spurious image 
points Combining TV image data with the laser scan data should help with the above problems. 
The boundary definition \z of course limited by the resolution of the apparatus. 

The segmentations for an object are chosen from several alternatives. Previously, in 
f.« it and 4 13 we presented the alternative cones for two scenes. Figures in this chapter show 
only the selected cones Choosing among alternate descriptions involves computation of the 
overlap of two descriptions. We have used boundary overlap as the measure of piece overlap, 
area overlap is more robust and closer to the desired measure. Area overlaps can be computed 
without substantial overhead because of the nature of the d '.a (the areas are described by an axis 
and normal cross-sections) Proper resolution of some alter ates requires redescnption techniques 

and was discussed in sec. 4 5. 
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Fig. 7.3   Segmentation of Scene Correspondini, to Fig. 7.1 
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THE MODELS SELECTED BY INDEXING: 

HORSE 
DOLL 
GLOVE 

matches   In preferred order 

HORSE 

PRINTING PIECE CORRESPONDENCES 

P9 NECK (Note P9 is the piece formed by merging P3 and PG) 
P2 BODY 
P4 FRONT LEG 
PI TAIL 

NO MATCH FOUND FDR THE FOLLOUING PCS OF THE OBJEC 

none 

NO MATCH FOUND FDR THE FOLLOUING PCS OF THE MOUEL 
HEAD 
RCAR_LEG 
F^ONT LEG 
CDMB REAR LEG 

Fig.  7.4   Recognition Results for Horse In Fig. 7.3 
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Fig.  7.5   Segmentation of Scene Corresponding to Fig. 7.2 
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Fig.  7.6   A View of a Horse 
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THE MODELS bELEClEU BY INDEXING: 

HDRSE 
DDLL. 
HAlinER 

matches   in preferred order 

HORSE 

PRINTING PIECE CORRESPONDENCES 

PI BODY 
P2 TAIL 
P3 TOP_REAR_L£G 
P5 FRONT LEV. 
P4 NECK 
P7 HEAD 

NO MATCH FOUND FOR THE FOLLÜUINC PCS OF THE OBJECT 
PG 

NO MMTCH FOUND FOR THE FOLLOUING PCS OF THE HOOEL 
BOTTOn_REAR LEG 
REAR_LEG 
FRONT_LEG 

DOLL 

PRINTING PIECE CORRESPONDENCES 

PI BODY 
P2 LEG 
P3 LEG 
P5 ARM 
P4 HE/'} 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE OBJECT 
PG 
P7 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE MODEL 
ARM 

Fig.   7.7    Recognition Results for Horse of Fig. 7.6 
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Fig. 78   A Snake 
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Fig.  7.9   Another View of a Doll 

THE HODELS SELECTED BY INDEXING: 

HDRSE 
DOLL 

matches in preferred order 

DOLL 

PRINTING PIECE CORRESPONDENCES 

P3 BODY 
P7 LEG 
P6 LEG 
P4 ARM 
P5 ARM 

NO HATCH FOUND FDR THE FOLLQUING PCS OF THE OBJECT 
P8 

NO MATCH FOUND FOR THE FOLLOUING PCS OF THE MODEL. 
HEAD 

Fig. 7.10    Recognition Results for the Doll in fig. 7.9 
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Fig. 7.11    A Clove 

THE MODELS SELECTED BY INOEKINGi 

HORSE 
GLOVE 

matches  in preferred order 

GLOVE 

PRINTING PIECE CORRESPONDENCES 

PI PALfl 
P3 MI DOLE.FINGER 
PS LITTLE; FINGER 
P4 INDEX_FINGER 
P2 FORE_FINGER 
PG THUhß 

NO NATCH FOUND FOR THE FOLLOUING PCS OF THE OBJECT 

none 

NO HATCH FOUND FOR THE FOLLOW .NG PCS OF THE MODEL 

none 
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Fig. 7.12   Recognition Results for the Glove in Fi;. 7.11 
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Fig. 7.13   Another View of a Doll 

Fig. 7.14   Another Hammer 
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Fig. 7.15   Another View of a Horse 
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In the cone description process, the local cones are extended until they encounter a 
discontinuity The discontinuity ii defined locally, as an abrupt change of the cross-section. The 
local continuity definition works well with cylindntal parts, where the cross-section is constant or 
varies slowly. Parts segmented by a local discontinJity are meiged in later processing, e.g. in Fig. 
4.10, pieces P4 and P7 describing the top and the oottom of a leg are merged into a single piece 
as an alternative description (Also PI and P2 in Fig. 7.8). The converse, of splitting a piece into 
sub-parts later can a'^o be useful, but is not implemented. More eFor' is needed for a better 
global continuity analysis which takes into account the roughness of the boundaries. 

The descriptions of the axes :re generally satisfactory in the central parts of a piece 
Near the joint of a piece with other pieces, the descriptions can be affected by attempted 
extensions into parts of the other pieces, leading to either premature termination of a piece 
description or distortion (curling) of the axis near the end; e.g. see the end of piece P3, in Fig. 
7.13, near the joint with the body. This also affects those joint descriptors that rely on the 
angular relations of the pans. Improvement of such descriptions will require detection of this 
effect and perhaps redcscription after removal of the interfering parts We are able to defpct 
orthogonal terminations of a piece, eg. the face of the hammer in Fig. 4.7. Proper description of 
other terminations will require special routines. More attention also needs to be paid to 
descnp 'ons near the ends of pieces, eg. description of a hand terminating an arm However, more 
resolution is necessary for the implementation of such descriptions 

The resulting selected descriptions are satisfactory on the whole, the segmentations being 
consistent with the desired, intuitive descriptions. We believe that the results shown here are for 
a wide enough variety of scenes, that the success of the programs is not attributable to their 
tuning for the specific scenes, and that similar performance can be expected on scenes of similar 
complexity. The description programs hav.^ not resulted in any major "extraneous" piece 
descriptions. The recognition programs ignore small extra pieces (such as the piece PS 
representing a foot in Fig. 7.9). 

The connections among the pieces are easily inferred from the boundary. Symbolic, 
summary descriptions are generated for the pieces and the joints of an object, as discussed in 
sections 5.1 and 5.2. The joint descri|. ons relying on angular relations of the parts have not 
been very useful for us, because of the above mentioned uncertamities of the axes directions, and 
the allowed articulations of the parts. The bilateral symmetry computations rely on very crude 
measures for part similarities and neea improvement. 

For occluded scenes, the separation of disjoint bodies is adequate (except for the 
separation of touching objects) The hypotheses for connections of occluded parts are based 
primarily on proximity. Implementation of more sophisticated techniques requires improved part 
descriptions (e.g. more accurate axes directions). Knowledge of support and stability telations can 
be of value here No hypotheses are generated for the continuity of a part split into two sub-pans 
by an occluding part. E.g. in Fig 4.14, one of the legs of the doll is split into two parts because of 
the occlusion caused by thp snake lying across the leg. Such connection hypotheses will be essential 
for scenes with heavier occlusion than considered here. 

A dark supporting surface (background) has been used for our scenes The separat.on 
of parts of the supporting surface from the objects is not expectf- to be very difficult when using 
three-dimensional position data. This problem is n,eluded in th problem of sepaiatmg touching 
objects, but could benefit frcm the use of special rou mes, sucn as searching for planar surf?ces 

--  -    -  . .            
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The models used for recognition are not idial. but previously generated descriptions of 

the objects No effort has been put in "learmr.g" more complete models. We have used only a 
small set of models for our recognition experiments. However, the recognition programs are not 
written for this particular set of models and are expected to work well with other objects, that are 
well described by the chosen representation. Also, since recognition is strongly dependent on the 
structure, it is felt that addition of objects with different structures will not adversely affect the 
performance of these programs isntmmf that adequate descriptions are generated) For the 
following examples, the set of r.odels used consisted of the following: a doll, a horse, a glove, a 

snake, a ring and a hammer. 

The discrimination of the recognition programs is good between objects with different 
structures Eg. the glove in Fig. 7.11 is easily recognized by the programs (matches with the glove 
model generated from descriptions of fig. 4.9). Discrimination of objects from partial structure 
descriptions depends on the amount of the structure seen. E.g. the recognition of horse in Fig. 7.6 
is unambiguous but not in Fig. 7.5, and the doll m Fig. 7.9 is also recognized without any 
confusion. For objects with similar structures, eg a doll and a horse, relative sues of the parts are 
used for recognition. With unrestricted limb articulations, the angular relations of the parts have 
not been useful. For certain viewing angles, the relative size information is not adequate for 
clearly picking one model over tne other (remember, our models are incomplete). In such 
instances, the multiple choices are reported in their preferred order. E.g. the horse in Fig. 7.3 is 
recoimized oven though only a partial view is seen, but the identification of the horse in Fig. 7.5 
is not clear (choices nf doll and horse are reported, the dol. being the marginally preferred choice) 
Identification of individual parts is an integral pan of the recognition process. This makes the 
problem of further verifying the multiple choices easier (we have not implemented any 
verification techniques). Note the many articulated vews of the same doll, in Figs. 4.12. 6.3 and 

7.13; and a view of another doll in fig. 7 9. 

In some instances the objects are identified correctly, but the part identifications are in 
error E g. in Fig. 7.6, the tail and the rear leg of the horse have been interchanged (see the output 
in Fig. 77). This is because the decision was based purely on the metric sizes of these parts (the 
lengths widths, and the cone angles), and the models had no information about the attachment 
points of these limbs or the support relations. Shadows can cause part of the structure to be 
obscured. E.g. in Fig. 4.14. the head of the doll is not seen as connected to the doll body. Without 
this connection, the recognition programs interchange the identification of the arms and the legs 
(because of the interpretation of the shoulder piece as head). An hypothesis suggesting connection 
of the head to the body is generated, but is not examined by the recognition programs because of 
the above inconsistency. If the head is connected to the body first (by manual intervention), 
proper identification of the arms and the legs results, with the shoulder piece being classified as 
an unimportant extraneous piece (since it is not elongated). This example suggests that more 
"bottom-up" processing of hypothesized connections is likely to be necessary for complex, occluded 

scenes. 

The performance of the recognition programs could be improved by use of more 
detailed models. Some improvement could also be obtained by more detailed matching of 
individual parts, instead of just matching the average descriptors Of course, the use of other 
data, such as surface color and texture, would simplify many discriminations (e.g. doll vs horse). 

Such data can be obtained from the TV image. 

The indexing procedures are successful in working with partial views of an object and 
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yc, * timiter models The indexing process is "robust" in this sense. Effectiveness of 

ra«,! m" d^cnplS n«d to b. added   The number of n»d* used for our exper.men. U 
too small to provide meaningful statistical results. 

Only eeneralned cone primitiv« have been implemented in our description programs. 

Aad*,o„ Ä„rriP^ 
rund^nnr^^lvS'^sttr The n-od.ncUoo o( ,he descr^ton. ot .h. .oHd 
part in terms of these holes is more complex. 

The speed and memory requirements of our programs are discussed in the following 

section. 

7.2 EXECUTION TIMES AND MEMORY REQUIREMENTS 

in P    followmg we present the run times and program sires for the various stages of 
n nn   S m   All execution times are run times for a PDP-10. KA-10 processor. 

Ä^"MC^MS! ..paged) and the programs sires a, for 36 bit words, 
Estimafes of processing times for improved versions of these programs are offend. 

200 scans would take less than 10 sees. 

Much more time is spent in the preliminary processing stages of the prograrr. than at 
"h^her" levels Th°s consistent w.th the reduction of amount of data *t higher levels. Thinning 
oMase scan take two to five minutes of runtime, proportional .0 the number of points In the 
of '^^ ""» l*r 1S about o0K. computation for thmmng is not expected to be reduced 
^r, rJe acC However. thTnning of different laser scans I. independent of each other and 
by large IKTOTI rpA,.ceA hv narallel processing if such processors were available.   In our 

boundary.  Unthinned data could be used instead 

The execution time for linking the segments in a boundary depend on the sue of the 
n.cture Eethe horse ,n Fig. 4.10 required 20 sees whereas the picture in Fig 36 required only 8 
^ The toe am ue is about 20K. The major portion of this processing time is spent in 

TMn/rhe n^ers ctions of the two sets of las r cross scans (appendix 1). Such computations 
Tufd o'rria 1 e p^po t^luo the product of the number of segments in the two scan. 
However the use of laser calibration information limlU the number of cross scans that need to be 
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investigated for intersection with a given scan. The computation time is thus proportional to the 
product of the number of scans and the average length of a scan. In Appendix 1, we have 
outlinei a method for computing intersections directly by using a large memory array (21.5K) for 
recording the scans at ea-h point in the image plane The time required for computation of 
intersections will be that required to access this array once for each point in the laser scans hor 
an average scene containing 10,000 points of nonzero brightness, this time is expected to oe less 
than I second. Note that this time will be only a linear function of the number of points. 

Projection in each direction takes an average of 5 icond?. We project in 8 directions, 
requiring about HO seconds. The computation time is proportional to the number of boundary 
points for the object. The programs are about 30K m size, but th« temporary data storage 
requires upto an additional 50K Much of this storage could be reduced by more efficient coding 
of the present programs. The major proportion of the execution time for the projection 
operations is spent in computing the cross-sections, such as shown in Fig. 42. VVe think this 
computation can not be reduced significantly, but the projections in different directions are 
independent and could be computed simultaneously on parallel processors. 

The extension of the local cones generated from the projections requires about 45 
seconds each for objects in figs 4.6 and 4.13. The time required to compute these axes is 
proportional to the total number of cross-sections computed, which is proportional to the length of 
the axes of the cones. Processing time could be reduced by sampling the axes at coarser intervals. 
Some parts of the object are described by nearly identical, multiple cones resulting from different 
local cones, eg sec the legs in Fig 4.6. Such duplication could be detected, in some cases, before 
the extension of the cones by examining the containment of the axes of the local cones. The 
extension of different cones is independent of each other and thus amenable to parallel 
processing The sire of these programs is about 30K. Our cone description routines are abiut an 
order of magnitude faster than those described by Agin ([Agin 72]). this improvement corner from 
our use of the boundary rathe; than the points on the surface in the description process 

The resolution of overlapping cones and the symbolic descriptions of the chosen parts 
requires less thin five seconds for the examples presented here. The matching of a description 
with one model requires less than 2 seconds. Indexing reduces the number of models to be 
matched against, in ou- case to 2 or 3 (the time required for indexing itself is insignificant). With 
a large model base and no indexing, the matching times would become the major component for 
recognition. In our implementation, this stage of the processing requires the least time The 
symbolic description and recognition programs run in about 60K of memory (the running sue of 
the programs will go up with an increase in the number of models) 

The processing sp<*d of the current programs is far from being in "real time", the 
average time for complete processing being about 5-10 minutes (including the data acquisition 
times) However, with the speed up of data acquisition and elimination of thinning ;his time can 
be reduced to about 2 minutes These programs have not been optimized for run time efficiency 
and improvements can be expected by such optimization, e.g. the elimination of array bound 
checking and machine coding of the inner loops. 

These execution times arc, of course, dependent on the speed of the hardware processor. 
Already, processors five times faster than the processor used for our experiments are available at 
reasonable costs (e.g. PDF 11/45). Processing times of as low as 30 seconds are thus currently 
feasible.   As most of the time is spem in processing that can be done independently and in 
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7.2 EXECUTION TIMES »2 

parallel, multiple processors can be used to reduce this processing time in direct proportion to the 
number of such processors. With the expected decrease in the cost of such processors, near real 
time computation of our algorithms will be feasible at reasonable costs. 

The total size of our programs is about 150K, with additional data storage ranging upto 
50K, depending on the scene Much of the processing is sequential and only parts of the 
programs need reside in the memory at one time. Our system monitor does not permit fhis and tne 
programs are run as several smaller programs. The size of the programs is not expected to be a 
mapr constraint with the use of modern techniques of pag:ng monitors. 

0 
a 
a 
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7.3 FURTHER RESEARCH 

Several improvements in the performance of our programs can be obtained by 
implementation of techniques suggested previously (in chapter? 4. 5 and 6) In summary, the 

important ones are: 

1. Redescnption of parts after the descriptions of the neighboring parts are known. 

2. Use of more detailed models of the objects, perhaps for specific applications. 

3. Verification methods for resolving recognition ambiguities. 

4. Incorporation of primitives such as spheres and flat surfaces; and better descriptions of 

piece terminations 

5. Improved resolution from the hardware setup. 

In the following are suggestions for further research, related to our work, and to extend 

the results of this research. 

The major need is to extend the results for scenes of higher complexity, such as heavy 
occlusion or unfavorable viewing angles. Analysis of such scenes is likely to follow a modified 
control structure. Surface continuity hypotheses will need to be generated at an early stage and 
communication between different levels will need to be more extensive. Analysis would be helped 
by incorporation of knowledge such as support and stability. Use of such knowledge with only 

partial information about the objects is unclear 

Simpler analytical techniques may suffice for applications to visual feedback where much 
information is at hand about the expected objects in the scene. Visual feedback has been found to 
be of great utiluy in previous attempts at manipulation aimed for industrial automation 
applications '[Gill], [holies]) Incorporation of primitives other than generalized cones is likely to 
be necessary for objects encountered in industrial applications. 

Learning of model descriptions by using several views of the same object and by 
comparison with other objects is a description learning problem Winston ([Winston]) approached 
this problem for the domain of oolyhedral objects; we feel that the current domain is richer and 
presents further Important prob en... The descriptions generated here are not necessarily perfect 
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problems correspond to missing or extra lines in Winston's case) and seme of the relations (these 
are metric 

Even though we gather complete three-dimensional data about the visiole surfaces of an 
object our programs are able to work with merely the boundary data. Such data«an. In principle, 
be obtained from the TV image alone. For situations where the use of lasu ranging is not 
acceptable the camera image may be the only available Inpul (this still does not preclude the use 
of depth information obtained by a stereo pair of pictures). We do not expect a 2-D analysis to be 
easy, but still feel that our techniques offer hopes of making it feasible. 

The extraction of boundary information docs not require complete three-dimensional 
Dosition information. Grid coding techniques suggest possibilities of extracting boundaries more 
simply and quickly. Will and Penmngton ([Will]) have described experiments with shining 
various grids on polyhedral objects and direct extract-nn, of plane Uces. Consider shining a grid 
of alternate dark and bright lines on an object, inc extremities of the lines on the object can be 
used to construct the boundaries. However, some ambiguities occur because of ccmudence of 
segments from different lines in the projecting grid (this confusion is what prevents the direct 
position measurement of all points on the surface by shin ng a single pattern on the object). 
Output from shining a rectangular grid is equivalent to that obtained by considering all the laser 
scans for one scene from ou, current apparatus at the same time. Fig 35. shows the laser scans 
for a doll some scans apper,r to go unbroken from the head of the doll to the body because of the 
coincidence of segments frcm different laser positions. The individual scans, not shown in the 
figure here show clear disco.-tinuities and the boundary shown m Fig. 3.4. separates the head and 
the body (Note the head and the body are separated because of depth discontinuities from the 
particular viewing angle.) Coding of light patterns on the grid can be used to reduce such 
ambiguities For any code, some set of surfaces will give erroneous results. The requirements of a 
grid code for just extracting the boundary information and not necessarily proviue complete range 

information may be simpler. 
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74 CONCLUSIONS 

Research in the area of description and recognition for realistically complicated scenes is 
preliminary and our programs are not of direct use for applications such as industrial automation 
However we feel that a beginning has been made into extending computer vision techniques to 
curved and complex objects. We think that our techniques are generalizable, and that for 
restricted applications at least, extensions of our techniques can be made to work. The 
performance of techniques presented in this thesis was discussed in detail in sec. 7.1. and 
Suggestions for improvements provided in sec 7.3. Here we summarize ai.d discuss how our 
methods relate to some broad issues in computer vision and artificial intelligence. 

1 Representation: The power of our programs (or lack of it) is strongly dependent on shape 
representation In our experier.ee, the chosen primitives have been useful for the class of 
objects used in our experiments. We think that they will apply to a broad class of industrial 
objects and animal shapes We were able to describe objects at varying levels of detail and 
differentiate between gross and fine details. The primitives allowed the articulation of limbs 
to be expressed naturally, and we are able to recognize objects with such articulations. The 
only intermediate representations of interest were a representation of 2-d image space and a 
representation of the boundary, particulary proximity on the boundary. 
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»rent and segment.ng an object into   ^-P"".    'T^^^^,   rob,em (as for the cases 
$ir,>pler w.th the use of iepth data but "   remams     ^ment . P ^ 

of teaching bod.es and supportmg iurfa"fj" ^Vof body nto parts In our case, we 
The not.on of continuuy .s baMC to ou^ ^   ^  chosen 

nave used the ^'^J^^fXC. d.scont.nu.t.es. Better continuity 
representation, we hav been successful  " ',7'ng 8 tion  and preSent an important 
fomulatio ,s may «mit Hi more ^^^J^^™ necessary, but not all 
research problem In our ^^J^ f^^ decisi0ns can 0nly be made In 
problems need be resoWe   ^«^M^.«^ ^^ dp;:riptlon$ , 

^aaT1 wVLgge^ed so^"descr.pt.on techniques In the context of a p.nt. 

?.  indexmg: Our approach » ^^^^l^^^ ^^'^ 
descr.pt.ve stage seen.s necessary rf the    ^ '   t0 hav   an    nC      g^ ^ ^ and 

Sh"ep   ^^r^r a f^er^y  necessary   be.ore   "high   level" 
knowledge can be used (d.scussed In more detail later). 

4. Matchmg of Descnpnons: Our <^^^^^J^SZ. 
structures, The descript.on structures co ZJZXZ^M^ solely by a 
We believe that s.m.lanty of such structure^an
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recognit.on (such as. could the two ^f ^^^^ Jould be recogi.red 
deferences by "expla.n.ng" the d'^rences^. ^'^^f,^ {l essenf.l for 

as  a horse. ^^"1   ^^^ 
recognition from partial information. A,/\n0t.%7*;pn3must depend on the goals of the 
evaluations. The ultimate resoluuon of Jh;J,fJj^ ^7^1g p^ess should be that 
program. When confronted w.th a Wte «f;-«^ J.J J^Z^. Whether the object 
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l-^^S^r^^^"S^ett of 5 horse to distinguish it 

from a doll 
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Use of Hig». Level Knowledge: 

Some alternative paradigms, sugp.sting the use of "high level" knowledge and goal 
directed ("top down") techniques have beer suggested recently. In one form ([Tennenbaum]), this 
knowledge is used to limit the search, weh as by assuming that the telephones are found on tables 
in an office and by using the knowledge that a table top is easy to find. Another suggestion has 
been to use hypotheses generated from a very s.mple description of the scene (or parts of a scene) 
to guiH? rurther descriptions ([Freueder 73a,b]). We think that the principal is.ue in the use of 
high level knowledge to guide a vision process is th3 generation of a workaby small number of 
hypotheses about the scene (or the object). We discuss the various techniques in the context of 

the following tasks. 

I. The visual environment is limited and well known. The properties of objects (such as 
color) and their approximate locations are known (and no unknown objects are in the 
environment) Example; a selected office scene. 

2.The visual environment is limited and relatively well known. Most of the objects and loose 
spatial relations among them are known   However, the icene may contain unknown objects. 

3. A comnlex environment with known context, such as an ordinary office or an outdoor 
scene The scene contains many complex objects and a complex set of goals is specified for 

analysis. 

4. The context of the environment is completely unkn )wn, such as a randomly selected 

photograph. 

In taskl above, if the goals and objects are very few (e.g. telephones may be the only 
black objects on table tops), some relatively simpl? techniques can be used to recognize objects. 
For example, Tennenbaum's work uses only pomtwise properties such as color and no shape 
information at all. However, when the environment is more complex (task 2), e.g. black telephones 
and black note books may be found on a table top, a more detailed analysis (such as shape 
descriptions) of the scene will be necessary Tennenbaum's methods«can stil! help in limiting the 
parts of the scene that need to be described in detail. For known environments, a "top down" 
approach is likely to be more efficient and less prone to error. 

With rich visual environments (such as for tasks 3 and 4), we believe that a 
sophisticated "low level" analysis will be required to obtain reasonable hypotheses. In our system. 
the indexing of models (hypotheses) is more effective when a laige description structure is 
available, and local descriptions (of a single cone) can match a very large number of objects. The 
description mechanisms suggested by Freuder, should be of value after such indexing. We 
estimate that both low level description techniques and high level recognition techniques will need 

to be strengthened. 

The techniques presented in this thesis are best viewed as modules that can be idapted 
for specific applications. We believe that such description techniques will be necessary, e/en in a 
system based on a top down approach, for anything but simple and known scenes. 
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APPENDIX 1 
BOUNDARY ORGANIZATION 

In this appendix we discuss construction of a boundary from the laser scan data. The 
lasrT scans consist of two series of scans. Each scan consists of several TV frames. Each frame 
co' responds to one position of the illuminating light plane. The frames m one series of scans are 
pi educed by light planes which are nearly parallel The light planes for the two series of scans 
form an angle of between 60 to 90 degrees (depends on the hardware setup). One series of scans 
will be referred to as cross-icam frr the other series. 

Points in each TV frame group into a number of scan segments. Points within a scan 
segment are connected, i.e. each point has a neighboring point within one row or one column in 
the picture. No two points in two separate segments may be so connected. Thus, each scan 
segment corresponds to a continuous part of the surface. An object boundary is constructed by 
joining the end-points of scan segments (by straight lines) in an order determined by teenmqups 
described below 

An example of the scan output for a doll is shown in fig. S.S. These scans provide us 
with the equivalent of a binary intensity digital picture. Construction of the boundaries for such a 
picture is straight forward ([Duda] pp.290-293). However, in our case, the picture is sampled, i.e. 
we do not have intensity values at points between the scan segments. The boundary construction 
needs to estimate whether there is a cavity between segments. Our boundary algorithm is 
designed to work even if cross-scans are not available. We first describe the algorithm assuming 
that the cross-scans arc available and then describe the modifications, 

The basic requirement for the boundary is that it not cross a solid part of the object 
(and hence a scan segment), or a hole. We construct the boundary by comparing segments in 
successive franvs. Two scan segments, SI and S2, belonging to neighboring frames are considered 
to overlap if there is a cross-scan that inttnects both SI and S2. Overlap of two segments is taken 
to indicate presence of a solid part of the body between them (since there are :ome visible points 
in between). A modified definition of overlap, for siiuations where sufficient cross-scans are not 
present, is given later. 

We will describe the boundary linking by reference to pictorial examples. We first 
describe the connections of segments in two successive frames and the cross-scan segments 
terminating between them. Si, (i is an integer) is used to denote segments in one scan and Ci to 
denote segments in the cross-scan. Relations between segmems In the two frames fall in one of the 
following three categories. 

(a) A segment SI. in one frame overlaps with only one other segment in the next frame. The 
linking is as shown in Fig. A 1.1(a) Starting from one end of SI, we connect the ends of Cj 

that terminate between SI and S? until we come to a cross-scan segment that intersects them 
both. The boundary now connects the cross-scan segments intersecting S3 but not SI, and 
terminating between SI and S3, until the end of S3 is reached. 

(b) Two segments, say SI and S2, both overlap segment S3 in the next frame. Linking of 
end-points is as shown in Fig. All (b) 

Note that this generalizes to overlap of many segments with one. by repeatedly considering 
overlap of two segments in one frame with one segment in the other frame 

■MMMHHMI ■ 



WIB • ■ ■• mmmmmimfmm^mmv iimi'kmtmmmmm**mmmmmmmmmmm*ß*'*m^^ 

Al 

i=. 

BOUNDARY ORGANIZATION 

BOUNDARY 

(a) 

Fig. AM   Boundary Linking for Different Cases 

97 

o 

i 

0 

J 

■ i 

i 
. i 

.: 

Q 
r 

--  i 



0 
0 
D 

ü 
D 
Q 

Al 
BOUNDARY ORGANIZATION 98 

(c). Segment SI does not overlap w.th any segments m the next frame   This s.toation U 
shown in Fig. A 1.1 (c). 

The above cases have illustrated local boundary organization. Starting from one end of 

boundaries.   Case (a) above "«f^« ^T« CiM (b) .HusMates the jr.nmg of two such parts. Ä^Ä^Ä^irr sr^r. J c2 w ******* 
boundary at the end of a part. 
Modifications of the Algorithm. 

The algorithm described above is heavily dependent on the determination  of the 
•■      ,  V'l, two simems The requirement of a common intersection cross-scan was used for overlap   of two segments.  1 ne , c, ^ ^ ^^^ t0 use for 

determination of overlap.   However, tor sh0 l ^m Cr0ss-scans ?re not orthogonal (but 
determining overlap (b.^^^^ nearly ^ short 

^^w^ «lÄiTcÄ would).  To overcome these d.fficulties. overlap U 

redefined as follows. 

Two scan segments SI and S2 (in successive frames) are taken to overlap if one of the 

following holds: 

1. There is a cross-scan segment that intersects both SI and 52. 

0 
Q 

n 
o 
D 
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■ 

2. (a) Thm is no crMMWl frame, such Ih« one segment of tins ftame mtersem SI and the 
other intersects S2, and 

(b) There ex.sts « plane though the point of illum.nanon and normal to the plane of Si 
that it intersects both segments SI and S2. 

Example: Fig. A 1.2, 

(a) SI and S2 overlap 

(b) SI and S2 do not overlap (Cl and C2 belong to a common frame; C3 and C4 belong to 
another common frame). 

(c) SI and S2 do overlap (Cl and C2 do not belong to the same frame),  between them. 

(d) S1 and r-2 do not o^ crlap (condition 2(b) is not satisfied). 

If cond.tion     'a) is not satisfied, it indicates there is evidence of a *^b«WienSl 
A M   r JSw« 2 ftO indicates that an orthogonal cross-scan could have intersected them both 

aand with lacrrevlce'tothVcontrary (i/condition 2(a)). we assume that S. and S2 do 

overlap. 

Thr mod.f;ed definition ll equivalent to assuming that there is no boundary between 

-    . —^-J mmmimm^m^m 



■fWP—P", 
'■ ■' 

■U1"'!     Il|lll 

Al BOUNDARY ORGANIZATION 99 

Cl 

C2 

SI     S2 

(c) 

Cl 

C3 

C2 

C4 

SI S2 

(b) 

SI 

^ 

%■ 

(d) 

Fig. A 1.2   Examples of Segment Overlaps and Non-overlaps 
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two scan segments when we have no way of test.ng it with the avaHable data. Improvements 
could be obtained by using the gray level TV .mage tn addu.on to the scan mfoi mation; we have 
not implemented this. The resulting boundary is affected by any errors In the input data, such as 
missing scan points or addmonal scan points caused by noise Some degree of resistance to such 
errors is achieved by ignoring boundanes formed solely by connecting segments in just one rame 
(this overcomes holes caused by a few missing points in just one segment or boundaries outlining 
isolated noise points). Note thot these difficulties of boundary detection from laser scans are 
minimal compared to the difficulties of boundary detection from f,ray level pictures. Further, these 
problems are resolvabk by improved scanning hardware. 

Another problem, caused by some unanalyzed attributes of our scanning apparatus, has 
been in the end-points of the two series of scans not corresponding exactly, but offset from each 
other. This makes the resulting boundary jagged and affects the accuracy with which cone 
descriptions can be generated based on these boundaries. 
Computational Requirements. 

In our method, boundary linking requires calculating the intersections of the segments 
from the two cross scans We need calculate only a few of the possible intersections near the ends 
of the segments. Given a segment SI, we can calculate which cross scan angles can contain 
segments that intersect SI (by calculating the angles of end points of SI from the laser viewpoint, 
and obtaining cros« scans in that range of angles) The intersection of two segments is determined 
by making piecewise linear approximations to the two segments. A few minor errors and extra 
effort are caused by slight errors in the intersection process and by the calibration uncertaimties 
which give small angle errors in choosing cross scans 

An alternative approach for computing intersections would be to use i large array, 
where each byte of the array corresponds to a position in the image plane. For each point that 
belongs to some segment in one scan orientation, mark the corresponding byte In the array by this 
segment number. Now. for each point that belongs to some segment C,, in the cross scan check 

whether the corresponding byte in the memory is marked. If so, then the segment C, intersects 

with the marked segment in the memory, at this point. This method will give us all intersections 
without searching The obvious disadvantage is the requirement of a large mpmory. (Each point 
in image plane requires only enough bits to identify the segments m one scan. Nine bits ptr point 
would be adequate for us. In our system, with 333 x 256 image points, a storage of 21.5K. 36 bit 
words is required, which is not prohibitive. The sue can be further reduced by variations of hash 
coding.) The time requirements of this method will be proportional to the boundary length. 

The computational effort required for computing intersections is inherent in the two 
dimensional nature of the problem, versus time tradeoff between the two methods described here. 
Actual computation times for boundary construction and expected improvements are discussed in 

sec. 7.2. 

Hlgll-.H 
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APPENDIX 2 
DESCRIPTION OF ALGORITHMS 

This appendix presents the algorithms used in this thesis. These algorithms, the reasons 
behind choosing them and their performance have been discussed in the previous chapters. The 
purpose here is to state them In one place in a concise form with all relevant details. The 
appendix is divided in the following sections paralleling chapters 4,5 and 6. 

1. Segmentation: Projection, Extension of local cones. Descriptors for a cone, and selection of 
segmentations. 

2. Symbolic Descriptions: of pieces, joints and object Shadowed pieces. 

3. Recognition: Indexing, matching and choice of matches. 

A2.I SEGMENTATION 

SOME DEFINITIONS: 

Definitions of some terms used in the following algorithms are repeated here. The term 
"cone" will mean a "generalized cone". A three-dimensional (two-dimensional) generalized cone is 
generated by sweeping a planar (linear) cross-section along a curved line in 3-space (2-space). For 
a two-dimensional cone, the term "cross-section" will mean a straight line segment entirely within 
an object, terminated by end-points on the boundary of the object. For three-dimensional cones, 
the end-points of a cross-section will mean the two point of the cross-section tha' are on the 
boundary of the visible surface of the cone. 

A2.IA. PROJECTIONS 

The projection procedure finds two dimensional local cones in the camera image, using 
the boundary.   The following projection procedure is repeated for 8 directions, Xi.Xoi-Xg, at 

22.5 degrees interval from 0 to 180 degrees. The following describes the projection procedure for 
out of these directions, say Xj. 

1. Transform Co-ordinates: 

Transform the coordinates of the points on the boundaries of the object to a system with 
axes XpY,; where Yj is orthogonal to Xj.   (Note, the figures to be presented here are all 

drawn with Xj pointing honzomally.) 

2. Form Cross-sections: 

Form "cross-sections" (two-dimensional), parallel to Y,, such as shown in Fig. A2.I by solid 

straight lines, at regularly spaced intervals of 10 picture units (the complete picture is 330 
units wide). Fig. 4.2 shows cross-sections for an actual example (Note that all cross-sections 
are not exactly parallel to the Y, axis, because the ends of cross-sections are limited to points 

on the boundary obtained from ttür' laser scan data.) The cross-section end points are 
stored in an array of lists indexed   y *he X, coordinate. 

  - -   — — '-■■— •f lifai min II 
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Fig. A2.1    Cross-sections for a Selected Projection Direction 

3. Test cross-sections for local cones: 

(a) Find neighboring cross-sections: 

Two cross-sections are neighboring if each end of one is connected to one of the ends of the 
other Zugh any part of the boundary and no other cross-section ends "e'long this part o 
the boundary,   For example, in Fig All. Cl and C2 are ne.ghbors and C7 and C9 are 
neighbors, but not C5 and C7. i.or C6 and C7. 

(b) Test for local cones: 

If the l*ne joining the mid-points of a pair of neighboring cross-sections forms an angle of 
leslthan 22 5 degrees with X., then these two cross-sections are taken to form a local cone. 

If either of the cross-sect.ons beiongs to a previous local cone, add the other cross-section to 
the same cone, otherwise include these two in a new cone. 

(c) Repeat steps (a) and (b) for all pairs of neighboring cross-sections. 
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4. Retransform the co-ordinates (of the mid-points of those cross-sections that are part of a 
loca! cone) to the original (X.Y) coordinate system. 

The output o«" th.s procedure is a set of local cones. Each local cone is defined by: a list 
of the mid-points of the cross-sections comprising this cone and the parts of the boundary on the 
two sides of the cone. Fig. 4.3 shows the axe^ of the local cones obtained from the cross-sections of 
fie 4 2 Fig 4 4 shows the axes of local cunes of the same doll, obtained by projection in 8 
different directions. Note that various parts of the body are described by different local cones for 

different projection directions. 

A2 IB. EXTENSION OF LOCAL CONES: 

The projc^lons provide us with a number of local cones. In this section we describe 
procedures to extend these eon« over larger parts of the object continuously. Before extension 
can proceed, however, we "refin.' the axis of the loca' cones as explained below. 

Axis "Refinement": 

The axis of the local cones generated by the projection procedure is not necessarily 
normal to the cross-sec.ions (is within 225 degrees of it). Example. Fig. A2.2. shows cross-secMcns 
L., and Cj constructed during a projection, and the local cone axis given by joining their mid- 

points. M, and M2. The line M |M2 was required to be only within 22.5 degrees of being normal 

to Ci and C2. Starting from here, we wish to find another axis, and cross-sections such that: 

1. The cross-sections are normal to the axis. 

2) The axis passes through the mid-points of the cross-sections. 

First we illustrate the procedure, by using the above example. Starting from the axis 

M,M2. we compute new cross-sections. C,' and C2'. normal to M,M2 as shown in Fig. A2.2. 

LET M|' and M^ be the mid-points of these new cross-sections (not shown in the tigure) 

Joining M/ and M2'. we get a new axis and this process is repeated until no significant changes 

occur. (Note that in our example, the process converges immediately after one iteration, as M, 

and M2' are indistinguishable from Mi and M2). 

In the above example, we have described the procedure in 2-d. for the sake of clarity. 
Actual computations are performed in 3-d space. The cross-sections are now a planar area, 
however, we will compute only the end-points of the cross-sections (i.e. the points of the cross- 
sections on the boundary). The following describes more details of the algorithm used. 

Details of axis refinement: 

This algorithm starts from the local cone axes given by the projections. The axis is 
specified as a list of points, known as axis points. The 3-d positions of the points are used 
(obtained from the 2-d positions by a known calibration).  Only the part of the boundary that is 

^iiiiiiiüiittaMlnii'flniivi 11 
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.; 

Flg. A2.2   Axis Refinement 

associated with the local cone, as supplied by the projection procedure, is used here.  The goal of 
this process is to compute an axis and a set of cress-sections such that: 

1). the axis is normal to the cross-sections and 

2) the axis passes through the mid-points of the line joining the end points of the cross- 

sections. 

The following are the steps in this process. 

I. Compute axis direction: Fit a straight line to the axis points (Least mean squares fit). 

2 Construct New Cross-Sections: At each of the axis points, construct a plane normal to the axis 
(as determined in step I above). Compute intersections of each plane with the given parts of 
the boundary on the two sides. These intersections for each plane constitute the end-points 
of a new cross-section. Note that a normal plane at some axis point may not intersect with 
the given parts of the bour-'ary on either one or both sides. In either of these cases this 
normal plane does not contribute to a new cross-section. 

If t;ie number of new cross-sections falls to I or less (by not being able to find boundary 
mteri^tions) then this procedure terminates and no cone results from this piocessing (the 
local cone we started from is rejected fo  sny further processing). 

3 Compute new axis points: Compute the mid-points of the end-points of the new cross-sections 
constructed in step 2. These mid-points form the new axis points. For each new axis point, 
compute its distance from the old axis point. Compute the average of these distances, call it 

the average correction. 

-- ■ ■muri   -"- -J-    ■ -       -u  -■   -—-   - ■   -        ,        |   ■ iJi 
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■f Evaluate the new axis and cross-sections: One cf the following steps is taken next 

a). Acceptable cone; If the average correctioi computed In stfp S is less than the ? d distance 
corresponding to 2 picture units (is related to the expected »anging error), then the ixis 
refinement procedure terminates, with its output being the new cross-wtions and the new 

axis points. 

b). Iterate: If the average correction is larger than accepted in (a), then iterate by going to 
step I (unless (c) below holds).  Use the newly found axis points (in step 2) for iteration 

c). Accept the cone: If the number of iterations caused by (b) equals five, the procedure is 
terminated and the new axis points and the new cross-sections are accepted (regardless of the 

computed average correction) 

The outpu. of this algorithm is a list of the axis points; a list of the end points of the 
corresponding cross-sections; and the associated boundaries of the cone 

Extension: 

The cones from the above process are extended continuously at both ends We will first 
illustrate the extension by an example, and again use a two-dimensional example for clarity. 
Details of the algorithm follow shortly. Fig 4 5, shows the axis of a cone to be rxtendeo. The asis 
is extrapolated a small distance and a normal cross-section constructed The mid-point of the new 
cross-section and its distance from the extrapolated axis point is computed. If this distance is small 
the axis extends to this midpoint. If the distance is large (as is the case in the example), a new 
direction for the extrapolated axis is computed by including the new mid point A new cross- 
section normal to this new direction is constructed. This process could be iterated but we use only 
one iteration   The new cross-section is then examined for width continuity 

The details of the extension are described in the following 
described here, and the procedure is repeated for the other end. 

Extension at one end is 

1. Extrapolate the  axis   Starting from one end  extrapolate the axis in  the  local  direction 
(computed by fitting a least mean squares straight line through the last five points) by an 
amount equal to 0.025 the width of the cross-section at this end (limited by a minimum of the 
3-d distance corresponding to 2 picture units and a maximum of the distance corresponding 

to 8 picture units). 

2. Construct a new cross-section: 

Construct a plane normal to the axis at the extrapolated point 

(a) Is the end of object reached ? 

Examine whether any part of the boundary of the object is beyond this plane in the 
direction we are extending, if not then the end of the object has been reached and we try a 

half step (step 6). 

(b) CDmpute intersections of the plane with the boundary on both sides of the cone.   The 

-  ■-- 
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,     . rf^rmiM a new cross-section and the mid-point determines a new axis point   If .ntersections determ.n      new cross ^J      ^^ ^^ ^ ^ 

1? ' r^ddu ona len t, of boundary (5 more boundary points) is added If addition of 
then an ^^^"Xo not produce an intersection then we try a half step (step 
^«h^Ä^.« tM boundary has changed direction ^P'^*™ 
6). (bu.n cona'1 , undarv mav resuit when extensions of a cone describing an arm of 
ÄÄÄÄ, 2. -tempted, because of the sharp turn of the boundary - 

Note that further tests apply, even if the intersections do result.) 

„, if fhm Hutance of the new axis poirt from the extrapolated axis 

the cone JXIS direction to change. 

^ Tr rr rxr ,=ä: ää r r= 
^This prtvents M ««ns.on of . con. mto hol») If so. Ih«. go .0 half Mep («p 6), 

5 Ex.n„nt the Cro«-s«.,on width «hfiMd .o be th. d.staoce Mwm .he '« "f-P01"^T!;* 

extension continues (step I). Othe) w.se try a half step (step 6). 

6 Half Step This step is reached because extension w.th the extrapolated c;i
0"-se<-t'0'1S

t[
a

n
,':d

fn
a; 

6. Half Mep   ' ms "*P d once Wlth half the normally used distance for 
euher s eps 2,3 4 or ^ » »J^L , half step, extension terminates (for one end 

^Är ThVu!/"; "isS Z iU^ Ä in the cone to be sampled closer 

and also to define the ttrmmal cross-sections more accurately 

Each  local cone is extended in both directions. The output of these Procedures  is 
5 « JSL « list of the uos.tion of the axis poms, the direction of the axis at each of 

ITÄi^^^ —onsi and the boundary segmems on the two 
sides of the cones. 

Fit 4 6 shows the axes of the emended cones for all the local cones of Fig. 4.4. Note that 
.    !?. of the ob ect are described by more than one cone.   This is clear for the cones 

r"3!? he he d HoSe     x ;   on5 0f afferent local cones for the W leg or the same arm 

descriptions is discussed next. 
n 
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A2.1C. DESCRIPTORS FOR A CONE; 

The following summary mformat.on is stored for each cone. 

1. Length of its axis. 

,  Th. average w.H.h of .h. en»-««« «•« -*" - « "*"***' " **""* " *" *' 
distance between its two end-points) 

, Th. ..««. cro—,on w,d,hs « both ..d. or .!» con, (compu,ed b, ...ag^ ,Ke w.d.b:. 

of the last five cross-sections at each end). 

4. unph ,0 -id* ra„o (w,ll b. ca.led LWRAT).Ra„o of .he quanuf.es def.ned ,n  1  and 2 

above. 

determines the average cone angle. 

6, AX,S d,rK„on and pos.non a, each end of th. cone Che c,oSs.Sec„on a, each end ..« be known 

as a terminal cross-section). 

,, The assoceci bounda,, wuh ,he «o .des of .he cone b.ored as Us.s of bnonda,, po.n.s) 

A2 ID CHOICE OF SEGMENTATlONi 

^'^«^/"eSts     on   h sen preference c.er.a and ,he other cone ,. eUmmarea from 

ZZUtäSZ atrhe cho.c. for repr.sennng a par, of rh. *JK,. 

The fohowmg resrs are performed on th. .wo cones rn ,h. order present below <an 

example follows this description); 

1. Is one of the cones too short? 

, i».c rhan fm the cone with the smaller LWRAT is 
ILSJÄ rs"r a^ed r^r^^r „ a ,on6er cone descr.bes par. 
of the sa. e area) 

2. Is one cone largely included m the other? 

Compnre whe,her n,ore rhan 0.« **}»%?J^ ^^Zto^ZZ 

'^Z'T^rr^^Z^^ for each con. .ha. „e no, 
included in the other. 

If only one cone is so included, eliminate the included one. 

_ ..  ..    
—-   ■ ■ - M^MilMillHIIMM 
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It both are included, one of them is selected as explained in step 4. ^, 

3. Is one cone included in an extension of the other? 

Consider evaluation of whether conel is included in the extension of cone2 Let the "center" 
of a ro section be defined to be the mid-point of the straight line Joining the end-pomts o 
the c os sPC .on. Construct two straight, circular cylinders, w.th their axis starting from h 
enter« of the two terminal cross-sect.ons of cone2 and pointing away from wn* Let the 
enl of th axis of the new cylinders be 0.35 , length of the axis of cone2 and the diameter 
be the wiith of the terminal cross-section at that end plus the 5-d distance corresponding o 
'o pictue units. (These cylinders are meant to be approximations of how cone2 would 
JxuK each end w.th the radius enlarged to ?ccomodate the effects of various erro.s) 

If each boundary point of conel that il not included in cone2. "« *'th'" the vo,ume °ff 
tl     of the cyl.nd is described above, then conel is taken to be included in the ex ens.on of 

cone2   Agam both conel and cone2 can include each other this way (see step 4).   If only one 

cone is included, the included cone is eliminated. 

4  If both conns include e.ch other, then one of the cones is picked based on its ^scnpto^ 
The bas s for choice are the length to width ratios of the two cones or their average cone - 
In/les d p ndmg on which gives better discrimination. Compute the ratio of the larger cone ^ | 

anc r'to   he smaller cone angle and call it CONE RATIO. Compute the ratio of larger 
LWRAT   o Smaller LwRAT and call it the LW RATIO,   If the CONE RATIO is 
higher than LW RATIO then pick the cone w.th the smaller cone angle else pick the cone 

with the larger LWRAT. 

Example Fig  4 6 shows the extended cones for a doll and Fig 4.12 the selected cones 
horned bv   he   bove nrocedure   Most overlapping cones were resolved by step 2 m the above 
.h^sete    conel mcluded the other conlfdLnb.ng the same area), with the following 

Ixcemions The cone representing the shoulder area in Fig. 4.6 was judged to be included in the 
x en   on of the  one rep.esentin   the body area (PI in Fig. 4.12). Note that one of the legs in Fig 

4   2 cön ist   of two cones, P5 and P6 Here, P5 was not judged to be included in the extension o 
P6 (extend d P6 does not include the lower part of P5).   However, P5 and P6 are judg d to be 
rontinuous and merged into a singW piece later (this is described in   Merging of two Pieces   in J 

sec. A2.2B of this Appendix) 

We have used the inclusion of boundary in step 2 above    Use of area inclusion was 
d.scussed  and  recommended  for future use in sec. 4.5    Also, the evaluation of the cones by 
e tens on   n <t pT's not very robust for resolving cones like the shoulder cone   n the dol 
example   Redesmption techn.qlies expected to give more reliable results were d.scussod in sec 4 5 

(but have not been implemented) •• 

Note that in the above processing of two cones w.th overlapping boundaries one of the 
cones is not necessarily eliminated. The resulting segmentation having parts w.th small overlaps is 

quite acceptable 

.: 

.; 
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A2.2. SYMBOLIC DESCRIPTIONS: 

Some Dfnmtions; 

A biece U defmed to be a segmented sub-part of an ob.ect.   PtCCCf are represented by cones 
J, Ke currentTmpiementat.on. However, the term will be used to allow for addmon of other 

types of primitives 

Different pieces are connected * joints, (joints are discussed in more detail below). 

A2.2A PIECE DESCRIPTIONS 

Descriptions used for a piece were covered under the headmg of cone descriptors, sec. 

A2.1C of this appendix. 

rÄf^T^ufrJX^^L D-U of o,her UMfu, d«cnP,orS Tor 
future use are covered in chapter 5 

A2.2B. JOINT DESCRIPTIONS 

The lomts of pieces (represented by cones) are determined from the connections of their 
terminal clos -ecMons along the boundary   The joint construction is discussed only by pictorial 
IZnl X 4 2 shows the selected cones for a doll. Fig. 5.2 shows the joints constructed for examples,   nr 4. 2   hows tne g^ ^ cones p,p4 and p6 „ an 

exeamPTe        e j       w^ the cones at a JoUS H overlap each other. The boundary c.th. 
example oi intju h.mi,,Ki „f the object and the terminal trosssections of the cones 
C T2 ,  S m       n t    ha  P    ,     ™l.m6 J head . no, connected to ,h,S pint („ be.ngs ,0 
Joint J2 is similar, no« inw     ,    ^ • betWeen P5 and P6 shows a joint between 
. separate boun ary becaus   of   had w t   ^   etw en^^ ^ ^ ^ ^ ^ ^^ 

Td oMhr, gnga d0 the u^ole^ed5'0:: SÄ the joi^t area; cones for the arms and the other 
leg do extendgto the end of the object and hence are not attached to any joint at one end) 

Two pieces (cones) belong to the same joint if one of th- following holds. 

(a) The part of the boundary between an end-pomt of the terminal cross-section of one piece and 
an end-point of the terminal cross-sect.on of the other piece is not included in any other 

piece 

(b) The two pieces include a common part of the boundary. 

The following descriptions are associated with each joint: 

I A hst of the pieces attached to this joint and their order (the order is determined by the order 
oft piece as they appear in the image plane). Example Order of p.eces at joint Jl in 
Fig 5 2 is P1.P4,P6 or the reverse.  We do not differentiate between the two orders. 

2. The widest piece of the joint. 

«HHHÜ ■«ÜHMiailMi i n ■—I«— 
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3. The relative widths of the pieces connected to this Joint (normalized by the width of the widest 

piece). 

4 Joint types; the joint types were described in sec. 5.2. No further details are provided here, as 
we have not used them for recognition, also for the reasons stated there. 

Merging of Two Pieces; 

If a joint has only two attached pieces, the following tests are made. 

(a) Are the terminal cross-sections of the pieces at the joint similar (measured by their widths 
being within 25 percent of each other) and 

(b) 1$ the pint boundary covered in the extensions of both pieces (in the same sense as in 
step 5, choice of segmentations) ? 

If both of the above are true, then an alternative descr.ption is made by merging the two 
pieces The cone descriptors are lecomputcd for the merged cone. Note, the recognition 
programs investigate both alternatives and choose the one providing the better match 

A2.2C. OBJECT DFSCRIPTIONS; 

Some descriptions for the complete object are made. Only those descriptions that have 

been used for recognition will be described here. 

1. Number of well defined pieces (a well defined piece either has a length to width ratio of > 3.0 
or is r distinguished piece, as described below). 

2. Distinguished piece descriptions; Distinguished pieces are determined in the following way. 

(a) Determne the two widest pieces of the object. If the ratio of the widest piece to the next 
w-dest is larger than 2. then the largest piece is a distinguished piece. Otherwise both are 
considered distinguished Such distinguished pieces are defined to be of type Wide. 
Example; for the doll, both the head and the body are such pieces. 

(b) If one piece has length to width ratio larger than twice the length to width ratio of every 
other piece of the object, then this piece is defined to be distinguished and of type Long 
Example for a hammer, the handle qualifies as a long distinguished piece 

If one end of the distinguished piece is different from the other end. in one of the following 
ways, this property is also associated with the distinguished piece (helps in matching) 

(i) The width of the widest piece connected at one end is more than twice the width of the 

widest piece at the other end. 

(il) The maximum of the length to width ratio of the pieces connected at one end is more 
than twice the maximum of the length to width ratio of the pieces connected at the other 

end. 
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3. Bttattral Symmetry: See sect.on 5,3. Not d.scussed here because not used for funhe  processmg 

A2.2D SHADOWED PIECES: 

Connections of shadowed p.eces to the rest of the object are not directly ava.lable from 
u honnrf^v daü A p..ce wh.ch s unconnected at both ends, w.ll be called an .solated p.ece. 

We dete m e weh er s of an solated p.ece are m shadow of some other parts of the object (by 
^nver r he po 1. of the point, on tht object to a system centered at the laser source and 
d^rmmmg whether part occludes the other) Connect.ons for each .solated p.ece are mvest.gated 

as follows 

For each shadowed end. compute the closest d.stance of the term.na. cross-sect.on from 
the boundaTyof each  Joint   The shadowed end that I, closest to  a  Joint  ll plckod   and  . 
the bounaaty «J«"  J -ecoemtion programs investigate the connection of the 

srrir, :"„•; o'tirh pJhh;s,r.f. »ä, ^ ^ ,„ *">?*"*«* 
^    rrJd connecMon dunni; .«»muon. then the «NIMttWl hypoth«,! LS considered to be 

r  Z 1, ,lm f. "no   urfhe, ««npu are n>ade .0 determme .he connect.»«, or IhU piece 
^rrophlLicaied   :it:°nl,,veS   to,   typo.hesmng   conn.nons   .nd   d.r.icu.ies    in   then 

implementation are discussed in sec. 5 4. 

A2.2E. NOTES ON DATA STRUCTURES. 

The connection of different joints and pieces is stored. For each joint we store the other 
.nmts that ins connected to. ana the piece connecting the two. Also stored are the piece joint and 
STect iKO, . es "s d cribed previously in '.his section. Note that we have complete informanon 
abiu the tu ure and summary desc, i puons of pieces and joints The angles between different 
o'ece ta om re not expl.citl stored but are computable from the axis d.rections at the en s 
omeces The angle information has not been used in our recogmt.on programs, a^ we have 
a lowed frei hmb rticulation. The angle information is of obv.ous value m the recognition o 
unarucuS object or where the'articulat.on limits are known. Computer storage of 

descriptions is discussed in detail in Appendix 3 

A2.3. RECOGNITION 

In the following we present descriptions of algorithms used for recognition A detailed 
example is in sec. 6 1. and perfo.mance results are discussed in chapter 7. 

A2.3A. INDEXING: 

The first step in recognition is to find a set of likely models The following describes 
the implemented algorithm. Thi! indexing scheme has been a preliminary effort and extensions of 

the method are discussed in sec. 6.7. 

For each distinguished piece of an object or a model, we form a ■description code- 

consisting of the following three bits 

1 Is the distinguished piece connected at both ends. A model piece is connected at an end if it is 
connect^to any^other piece at that end. An object piece is so connected, only if it is 
connected to a well defined piece at that end (for reasons discussed below) 

■ 
__^. 
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2. Is this t'iece conical (is the average cone angle > 0.3 radians). 

3. Is the type of distinguished piece long (otherwise it is of type wide) 

Let N 1 be the number of pieces connected to one end of the distinguished piece and N2 
the number of pieces connected at the other end (again use mil defined pieces if considering the 
object to be recognized). Let N25 N I. All models having the same description code are stored m a 
list ordered by the value of Nl. 

For each distinguished piece of the object, retrieve the list of models having the same 
description code. Search along this list for models whose values for Nl and N2 are at least as 
large as for the object. Since the list is ordered, we need search along this list only until we find 
the first model with value of Nl smaller than acceptable. 

Here: wt are assuming that the object can not contain more pieces than the model, but 
can have an arbitrary number missing because of occlusion Also only well defined pieces have 
been used in counting the pieces for the object, since such pieces are elongated and unlikely to 
appear erroneously in the descriptions. 

If the object distinguished piece is connected at one end only, we also retrieve the 
models that would have been obtained, assuming that it were connected at both ends. Further 
modifications to the description code could be made based on the confidence with which the 
distinguished piece is known to be conical (this is not implemented). As a further test, if the total 
number of well defined pieces of a retrieved model is less than the total number of visible, well 
defined pieces of the object, then this model is not considereo for a match. 

For an estimate of the effectiveness of the current implementation, and its extensions, see 

sec. 6.7, 

A2.3B. MATCHING. 

The object description is compared to each model found by indexing. A match is 
defined to mean a set of correspondences between the pieces and the joints of an object 
description and the pieces and the joints of a model description. Associated wuh each match is a 
description of the differences The matching process is described below, the first four steps are 
concerned with matching the object description to one model description. 

1. Form a pair of distinguished pieces, one each from the model and the object description: One 
match results from each such pair Steps 1 through i are carried out for each pair of 
distinguished pieces that satisfy the following conditions. 

(a) The type of the two distinguished pieces (such as long or wide) is the same 

(b) If the object piece is connected at both ends, then so is the model piece 

Compute the piece match error resulting from matching this pair and associate with the 
match. Piece match error is an evaluation of how well two pieces match, and is a function of 
the differences in the widths, lengths and the average cone angles of the two pieces; this 
function is fully specified in sec. 6.3. 
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NOTE The avtrage width of each distinguished piece used to form a pair here is used to 
normalize the sizes (lengths and w.dths) of the other pieces belonging to the same object or 
the same model. This makes the following matching process insensitive to scaling of the 

complete object. 

2 Match the ends of the given pair of distinguished pieces; Let the distinguished pieces be called 
MDP and ODP. Let the joints at the two ends of MDP be MJ1 and MJ2; and at the ends of 

ODP be OJ1 and OJ2. These joints can be matched in two ways: 

(i) MJI with OJI, and MJJ with OJ2 or 

(ii) MJI with OJ2, and MJ2 with OJI. 

We test whether one or the other can be selected without a complete evaluation of these 
matches (as in step 3 below). The lollowmg tes's are performed to determine whether the 

two ends of ODP and MDP are "unsymmetrical" in the same way: 

(a) If both ODP and MDP have the property that the average wid'h at one end is at least 
twice the average width at the other end, then the match with corresponding ends is selected. 

(b) If both pieces have the property that the widest piece attached to the joint at one end is 
at least twice as wide as the widest piece attached to the joint at the other end. then the 

corresponding ends are matched. 

(c) Similar to (b). but use the length to width ratio of the attached pieces, instead of the 

width. 

If a choice between (i) and (ii) above can not be made here, than in the following step, we 
evaluate both alternatives, else we evaluate only the chosen alternative. 

3, Evaluate matching of distinguished pieces, with specified joint correspondences: 

This involves matching the two pairs of joints (such as MJI with OJI and MJ2 with OJ2) 
Now consider matching of two joints (such as MJI and OJI) With ?ach joint is associated 
an ordered list of pieces attached to it. Note that the distinguished pieces attached to these 
joints (MDP and ODP) have already been matched. The remaining pieces are matched with 

the following constraints: 

(i) the order of pieces in one list must be the same (or reverse) as the order of the pieces they 

are matched to in the list. 

(ii) the matching is "optimal" 

The optimal matching was described in sec. 6.3 and is not repeated here.   It is based on 
picking best matches for individual pieces and minimizing the total piece match error 

With each matching of two joints, we associate the resulting piece correspondences and the 

following evaluations of the match: 

-- ■-■ - — - - - 
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(i) the average and maximum piece match error of the pieces matched. 

(ii) a list of the unmatched pieces of the object and the model that are connected to the 

matched joints 

If a shadowed object piece is hypothesiwd to connect to the object joint being matched (as 
exDlained in sec A2.2D), then match this piece to an unmatched piece of the model joint (if 
anv) "• ehe piece match error of this match does not exceed the maximum of the piece 
match errors of the other pieces matched at this joint, then associate this match with the 

joint match.  Otherwise, ignore this match. 

A pair of joint matches is simply represented by two joint matches as described above. 

NOTE- the evaluation of these matches does not contain a term depending on the angles 
between the pieces, re. the articulation of different pieces is assumed to be completely free. 
Also note that the length and width of the pieces are relatively insensitive to articulation, 
since we are using 3-d data. Small variations may occur In the width depending on what part 

of the cross-section is seen. 

4 Select one pair of joint matches: If in step 3 above, we evaluated both pairs (suggested in step 
'     2) then one of them Is selected now (based on the above described evaluations, details are 

provided in the next section of this appendix). If one pair can be selected confidently, then 
The other one is not used for further matching. Otherwise, we maintain an ordered list 

containing both options. 

5 Choose between different matches resulting from different pairings of distinguished pieces (the 
selection procedure is the same as used in step 4). If some pairings are clearly preferable, 
only these are retained. All retained pairings are arranged in a list ordered by heir 
oreferences Note that the models that are very different from the object are excluded from 
further consideration and this list is not expected to be long even if many models are present 
(the indexing procedure is expected to have already reduced this number considerably). 

6 Steos 1 thru b are repeated for each model with which the object is to be compared. The 
'     preferred models are selected based on best match with each model (again, the same selection 

procedure applies). 

7 Extend matches. In step 6, we were choosing based only on the matching of a distinguished 
'     piece, its two joints and associated pieces. Now each match is extended to include other pieces 

if any 

For each pair of pieces matched so far. at least the joints at their one end were matched. If 
the lomts at the other end are not matched, do so now This may require the matching, ot a 
.oint aeamst a null joint, if one of the pif .1 is connected to other pieces at one end only. 
This process is repeated until all joints (ana hence all pieces) have been matched. 

8 Choose between matches with d.fferent models again, based on the extended matches. Output 
"     the preferred matches in order   One or more models may result as the output  of this 

recognition scheme 

The selection between two matches is discussed next. 
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A2.3C SELECTION OF MATCHES: 

A rrütch between two descriptions consius of a number of joint matches. The joint 
matches were described in the previous section. The selection of matches is independent of the 
number of joint matches included, and hence the same procedure is applicable for choosing at 
different stages of matching. 

The following quantities are computed for a match from its component joint matches 

(i) total number of wrtl defined pieces ot the object that are not matched (called NEXCESS). 

(ii) The average piece match error (averaged over all joint matches), called AVERR. 

(iii) The maximum piece match error (maximum over all joint matches) called MAXERR. 

A choice between two matches is based on these evaluations The following tests are 
performed in the order presented here. 

1. If the valut of NEXCESS for two matches is different, then choose the match with lower 
value. 

2. If the AVERR for one match is less than half that for the other match then choose the 
match with the lower v? iue. 

3. If the MAXERR for one match is less than half that for the other -natch then choose the 
match with the lower value. 

4. Compute the ratio of AVERR for the match with the higher value to that with the lower 
value, call this AVRAT. Do the same for MAXERR, and call this ratio MAXRAT. 

If AVRAT is larger than MAXRAT then choose the match with lower AVERR.   Otherwise, 
choose the match with lower MAXERR. 

In addition to the preferred match, this procedure also outputs a binary confidence 
rating for the choice. If the choice was made at either of the first three steps, than the choice is 
considered to be made with confidence, otherwise not. This confidence judgement was used In 
matching described previously to determine whether to keep the alternative matches. 

Note that this selection procedure does not use any evaluation of the number of 
unmatched pieces in the model. It is assumed that occlusion can hide an arbitrary number of such 
pieces Also the angles between different pieces were not used in making a choice We have 
assumed arbitrary articulation of the limbs. 

This selection procedure is designed to differentiate between two grossly different 
objects. Approaches for using model information to make finer choices are discussed it. 'ec. 6.6. 
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APPENDIX 3 
DATA STRUCTURES 

We briefly describe the data structure of symbolic descriptions. Symbolic facilities of 
LEAP ([Feldman]) are used. Each Piece and joint of an object is an "Item", an atomic primary of 
LEAP. Each object is also an item. With each piece item we associate its summary descriptors as 
the datum of the item. The list of descriptors is the same ns in sec. A2.1C of Appendix 2. 

Joint items have a list of component pieces associated to them. Relations of joints and 
component pieces are in the form of the following LEAP "triples" (for the hammer of fig. 4.7): 

RELATIONS 0 JOINT1 i [COLL1NEAR 0 PCI ■ PC2] 

RELATIONS 0 JOINT1 = [TYPE s JOINT1 ■ TJOINT] 

Note in the above the relations in enclosed brackets are "Bracketed Triples". They are 
asserted as associr.tions themselves. The relations used are: the different types of joints described 
in sec. 5.2, the collinearity, orthogonality and similarity of pieces. 

Linking of two joints by a common piece is also stored as a triple, permitting easy 
traverse of the connection graph.  E.g. for the doll in Fig. 5.2; 

LINK 0 [LINKED 0 JOINT1 ■ JOINT2] ■ PIECE1 

This relation asserts that the JOINT I and J01NT2 are linked and that the link is 

PIECE1. 

Object descriptions are in terms of distinguished pieces as follows: 

DIST.DESCRIPTIONS 0 DOLL i { DESCRIPTION!, DESCRIPTION } 

DIST_PIECE 0 DESCRIPTION! ■ BODY 

TYPE_DIST 0 DESCRIPTION! ■ WIDE.PIECE 

REL.WIDS 0 DESCRIPTION! ■ { set of relative widths at two ends of main 
piece} 

In the above, a description item corresponds to each distinguished piece and indicated 
tvpe of associations are made. One joint of the distinguished piece may have distinguishing 
features compared to the other, such as one joint has much longer pieces than the other, or has 
much wider pieces than the other. These are represented by the following type of assertions. 

LONC.PIECEJOINT 0 DESCRIPTION! ■ JOINTI 

WIDE.PIECEJOINT 0 DESCRIPTION! ■ JOINTJ 

Isolated pieces have associated information about the closest joint and a possible 
connection, if more evidence for linking is available.  E.g. for doll in Fig. 6.3: 

■1MI I I l^l^l 
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CLOSEST JOINT 8 P1ECE6 ■ J0INT1 

CLOSEST JOINT » PIECES '- J01NT2 

POSSIBLE_CONNECTION 0 PIECE6 » J01NT1 

TU la« assertion is for a stronger hypothesis for connection, in our case generated by 

symmetry considerations (sec. 5.4). 
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